Answer:
55.66 m
Explanation:
While falling by 50 m , initial velocity u = 0
final velocity = v , height h = 50 , acceleration g = 9.8
v² = u² + 2gh
= 0 + 2 x 9.8 x 50
v = 31.3 m /s
After that deceleration comes into effect
In this case final velocity v = 17 m/s
initial velocity u = 31.3 m/s
acceleration a = - 61 m/s²
distance traveled h = ?
v² = u² + 2gh
(17)² = (31.3)² - 2x 61xh
h = 690.69 / 2 x 61
= 5.66 m
Total height during which he was in air
= 50 + 5.66
= 55.66 m
The final momentum of the body is equal to 120 Kg.m/s.
<h3>What is momentum?</h3>
Momentum can be described as the multiplication of the mass and velocity of an object. Momentum is a vector quantity as it carries magnitude and direction.
If m is an object's mass and v is its velocity then the object's momentum p is:
. The S.I. unit of measurement of momentum is kg⋅m/s, which is equivalent to the N.s.
Given the initial momentum of the body = Pi = 20 Kg.m/s
The force acting on the body, Pf = 25 N
The time, Δt = 4-0 = 4s
The Force is equal to the change in momentum: F ×Δt = ΔP
25 × 4 = P - 20
100 = P - 20
P = 100 + 20 = 120 Kg.m/s
Therefore, the final momentum of a body is 120 Kg.m/s.
Learn more about momentum, here:
brainly.com/question/4956182
#SPJ1
Answer:
Broadcasting is the method, not sure about the stage it is done in
Explanation:
Answer:
<h2>18 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 6 × 3
We have the final answer as
<h3>18 N</h3>
Hope this helps you