Answer:
I = 26.36 cosω t A
Explanation:
Given that
C=0.74 mF
Vrms= 82 V
Frequency ,f= 49 Hz
We know that ω = 2 π f
ω = 2 x π x 49
ω = 307.72 rad/s
As we know that voltage given as
V= Vo sinω t

\
Vo=115.96 V
V=115.96 sinω t
The current given as




I = 26362.67 cosω t mA
I = 26.36 cosω t A
This is the current at time ant time t.
The vector c has a magnitude of 24.6m and it is in the negative y direction. Therefore

The vector b is 41.4° up from the x-axis. Therefore
![\vec{b} = b[cos(41.4^{o}) \hat{i} + sin(41.4^{o}) \hat{j} ] =b(0.75\hat{i} + 0.6613 \hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Bb%7D%20%3D%20b%5Bcos%2841.4%5E%7Bo%7D%29%20%5Chat%7Bi%7D%20%2B%20sin%2841.4%5E%7Bo%7D%29%20%5Chat%7Bj%7D%20%5D%20%3Db%280.75%5Chat%7Bi%7D%20%2B%200.6613%20%5Chat%7Bj%7D%29)
The vector a is 27.7° up from the x-axis. Therefore
![\vec{a} = a[cos(22.7^{o})\hat{i} + sin(27.7^{o})\hat{j}] = a(0.8854\hat{i} + 0.4648\hat{j})](https://tex.z-dn.net/?f=%5Cvec%7Ba%7D%20%3D%20a%5Bcos%2822.7%5E%7Bo%7D%29%5Chat%7Bi%7D%20%2B%20sin%2827.7%5E%7Bo%7D%29%5Chat%7Bj%7D%5D%20%3D%20%20a%280.8854%5Chat%7Bi%7D%20%2B%200.4648%5Chat%7Bj%7D%29)
Because

, the sum of the x and y components should be zero. Therefore,
For the x-component,
0.8854a + 0.75b = 0
or
a + 0.847b = 0 (1)
For the y-component,
0.4648a + 0.6613b - 24.6 = 0
or
a + 1.4228b = 52.926 (2)
Subtract (1) from (2).
0.5758b = 52.926
b = 91.917
a = -0.847b = -77.854
Answer:
The magnitude of vector a is -77.85 m
The magnitude of vector b is 91.92 m
Decompose the forces acting on the block into components that are parallel and perpendicular to the ramp. (See attached free body diagram. Forces are not drawn to scale)
• The net force in the parallel direction is
∑ <em>F</em> (para) = -<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
• The net force in the perpendicular direction is
∑ <em>F</em> (perp) = <em>n</em> - <em>mg</em> cos(21°) = 0
Solving the second equation for <em>n</em> gives
<em>n</em> = <em>mg</em> cos(21°)
<em>n</em> = (0.200 kg) (9.80 m/s²) cos(21°)
<em>n</em> ≈ 1.83 N
Then the magnitude of friction is
<em>f</em> = <em>µn</em>
<em>f</em> = 0.25 (1.83 N)
<em>f</em> ≈ 0.457 N
Solve for the acceleration <em>a</em> :
-<em>mg</em> sin(21°) - <em>f</em> = <em>ma</em>
<em>a</em> = (-0.457N - (0.200 kg) (9.80 m/s²) sin(21°))/(0.200 kg)
<em>a</em> ≈ -5.80 m/s²
so the block is decelerating with magnitude
<em>a</em> = 5.80 m/s²
down the ramp.
Answer:
Wavelength, 
Explanation:
Given that,
Number of cycles in a spiral spring is 2.91 in every 3.67 s
The velocity of the pulse in the spring is 0.925 cm/s, v = 0.00925 m/s
To find,
Wavelength
Solution,
Number of cycles per unit time is called frequency of a wave. The frequency of the longitudinal pulse is,

The wavelength of a wave is given by :



So, the wavelength of the longitudinal pulse is 0.011 meters. Hence, this is the required solution.