Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]
Answer:
The answer is a=b=c=3.833 cm
Explanation:
Lets call the variables a=side a b=side b c=side c
We have that the formula of the equilateral triangle for its height is:
1)h=(1/2)*root(3)*a
2) If we resolve the equation we have
2.1)2h=root(3)*a
2.2)(2h/root(3))=a
3) After the replacement of each value we have that
a=2*3.32/1.73205
a=3.833 cm
And we know that the equilateral triangle has the same value for each side so a=b=c=3.833 cm
Answer:
Gravitational force will be 16 times more.
Explanation:
we know;
Gravitational force (F) = (Gm1m2)/d^2
when mass of each is doubled and distance between them is halved;
F= (G2m1×2m2)/(d/2)^2
=(4Gm1m2)/(d^2/4)
=4×4(Gm1m2)/d^2
=16(Gm1m2)/d^2
=16F
1.06 is the <u>maximum</u> refractive index that the liquid may have for the light to be totally reflected.
Only when a light source passes from a denser to a rarer medium can it completely reflect.
When the angle of incidence surpasses a specific critical value, specular reflection occurs in the more highly refractive of the two mediums at their interface, and this reflection is known as total reflection.
sin
= μ
/ μ
From the diagram
Angle of incidence = 60°
sin60° ≥ sin
= μ
/μ
μ
≤ μ
sin60°
μ
≤ √1.5 × √3/2
= 1.06
Hence, the maximum index that the liquid may have for the light to be totally reflected is 1.06
Learn more about refractive index here brainly.com/question/10729741
#SPJ1
<h2><em>is used for the large-scale generation of electricity</em></h2>
- <em>Large scale power generation includes existing technology and infrastructure used to provide electricity in the UK. Current facilities use predominantly fossil fuel based technologies, such as </em><em><u>coal and gas</u></em>
<em>hope </em><em>it</em><em> helps</em>
<em>#</em><em>c</em><em>a</em><em>r</em><em>r</em><em>y</em><em> </em><em>on</em><em> learning</em>
<em>follow</em><em> me</em><em> </em><em>and</em><em> mark</em><em> </em><em>me </em><em>as</em><em> brainlist</em><em> plss</em>