The reaction;
O(g) +O2(g)→O3(g), ΔH = sum of bond enthalpy of reactants-sum of food enthalpy of products.
ΔH = ( bond enthalpy of O(g)+bond enthalpy of O2 (g) - bond enthalpy of O3(g)
-107.2 kJ/mol = O+487.7kJ/mol =O+487.7 kJ/mol +487.7kJ/mol =594.9 kJ/mol
Bond enthalpy (BE) of O3(g) is equals to 2× bond enthalpy of O3(g) because, O3(g) has two types of bonds from its lewis structure (0-0=0).
∴2BE of O3(g) = 594.9kJ/mol
Average bond enthalpy = 594.9kJ/mol/2
=297.45kJ/mol
∴ Averange bond enthalpy of O3(g) is 297.45kJ/mol.
Answer:
The minimum volume of the container is 0.0649 cubic meters, which is the same as 64.9 liters.
Explanation:
Assume that ethane behaves as an ideal gas under these conditions.
By the ideal gas law,
,
.
where
is the pressure of the gas,
is the volume of the gas,
is the number of moles of particles in this gas,
is the ideal gas constant, and
is the absolute temperature of the gas (in degrees Kelvins.)
The numerical value of
will be
if
,
, and
are in SI units. Convert these values to SI units:
;
shall be in cubic meters,
;
.
Apply the ideal gas law:
.
Answer:
a) 1.866 × 10 ⁻¹⁹ J b) 3.685 × 10⁻¹⁹ J
Explanation:
the constants involved are
h ( Planck constant) = 6.626 × 10⁻³⁴ m² kg/s
Me of electron = 9.109 × 10 ⁻³¹ kg
speed of light = 3.0 × 10 ⁸ m/s
a) the Ek ( kinetic energy of the dislodged electron) = 0.5 mu²
Ek = 0.5 × 9.109 × 10⁻³¹ × ( 6.40 × 10⁵ )² = 1.866 × 10 ⁻¹⁹ J
b) Φ ( minimum energy needed to dislodge the electron ) can be calculated by this formula
hv = Φ + Ek
where Ek = 1.866 × 10 ⁻¹⁹ J
v ( threshold frequency ) = c / λ where c is the speed of light and λ is the wavelength of light = 358.1 nm = 3.581 × 10⁻⁷ m
v = ( 3.0 × 10 ⁸ m/s ) / (3.581 × 10⁻⁷ m ) = 8.378 × 10¹⁴ s⁻¹
hv = 6.626 × 10⁻³⁴ m² kg/s × 8.378 × 10¹⁴ s⁻¹ = 5.551 × 10⁻¹⁹ J
5.551 × 10⁻¹⁹ J = 1.866 × 10 ⁻¹⁹ J + Φ
Φ = 5.551 × 10⁻¹⁹ J - 1.866 × 10 ⁻¹⁹ J = 3.685 × 10⁻¹⁹ J
The answer to this is letter D.
Chromium's electron configuration is <span>1s2 2s2 2p6 3s2 3p6 3d5 4s1, where the last electron is in the s orbital with only 1. As for Li, it is found in the group 1 metals, and it is a fact that all elements under this group has the their last electron to be in the s orbital with only one electron in their outermost shell.
</span>The electron configuration<span> associated with the lowest energy level of the atom is referred to as </span>ground state and each electron ion is in the lowest energy level possible. When the moment comes that electrons go into a higher level of energy, that is what we call the excited state.