Compound
Property
Molecule
Magnet
????
As,
5471 kJ heat is given by = 1 mole of Octane
Then,
5310 kJ heat will be given by = X moles of Octane
Solving for X,
X = (5310 kJ × 1 mol) ÷ 5471 kJ
X = 0.970 moles of Ocatne
So, 0.970 moles of Octane will liberate 5310 kJ energy. Now changing moles to mass,
As,
Moles = mass / M.mass
Or,
Mass = Moles × M.mass
Putting values,
Mass = 0.970 mol × 114.23 g/mol
Mass = 110.83 g of Octane
Answer:
Be
Explanation:
Reactivity increases from left to right and decreases from the top of the column to the bottom of column
Weather refers to short term atmospheric conditions while climate is the weather of a specific region averaged over a long period of time. Climate change refers to long-term changes.
Answer:
92.49 %
Explanation:
We first calculate the number of moles n of AgBr in 0.7127 g
n = m/M where M = molar mass of AgBr = 187.77 g/mol and m = mass of AgBr formed = 0.7127 g
n = m/M = 0.7127g/187.77 g/mol = 0.0038 mol
Since 1 mol of Bromide ion Br⁻ forms 1 mol AgBr, number of moles of Br⁻ formed = 0.0038 mol and
From n = m/M
m = nM . Where m = mass of Bromide ion precipitate and M = Molar mass of Bromine = 79.904 g/mol
m = 0.0038 mol × 79.904 g/mol = 0.3036 g
% Br in compound = m₁/m₂ × 100%
m₁ = mass of Br in compound = m = 0.3036 g (Since the same amount of Br in the compound is the same amount in the precipitate.)
m₂ = mass of compound = 0.3283 g
% Br in compound = m₁/m₂ × 100% = 0.3036/0.3283 × 100% = 0.9249 × 100% = 92.49 %