Answer: The resultant displacement vector is 5.6km
Answer:
Explanation:
Let equal mass of Ne and Kr be m gm
no of moles of Ne and Kr will be m / 20 and m / 84 ( atomic weight of Ne and Kr is 20 and 84 )
Let the pressure and volume of both the gases be P and V respectively .
The temperature of Ne be T₁ and temperature of Kr be T₂.
For Ne
PV = (m / 20) x R T₁
For Kr
PV = (m / 84) x R T₂
T₁ / T₂ = 84 / 20
We know that
average KE of an atom of mono atomic gas = 3 / 2 x k T
k is boltzmann constant and T is temperature .
KEKr/KENe = T₂ / T₁
= 20 / 84
The magnitude of the electrical force between q2 and q3 is given as a ratio between the product of their charges and the square of the distance of separation.
<h3>What is the magnitude of electrical forces between two charges?</h3>
The magnitude of the electrical force between two charges refers to the attractive or repulsive forces that exists between two charges separated by a given distance in an electric field.
The magnitude of the electrical force, F between the two charges q2 and q3 is given be my the formula below

Therefore, the magnitude of the electrical force between q2 and q3 is given as a ratio between the product of their charges and the square of the distance of separation.
Learn more about electrical force at: brainly.com/question/17692887
#SPJ4
<span>impulse =force*time=mass*acceleration*time=mass*... in momentum , I hope this helps you out!! Also have an amazing day and good luck on any further work !!!
#brainlyzkool</span>