Take the tiny bit of carbon dioxide and the tiny bit of water vapor out of the air,
and the rest of what you're breathing right now is a mixture of elements.
Your answer would be C. Hope this helps!!
<h3><u>Answer;</u></h3>
C. Supersaturated
<h3><u>Explanation</u>;</h3>
- Solutions are homogeneous mixtures that are created by mixing a solute and a solvent. Solute is the substance present in smaller amounts that dissolves in a solvent such as water which is the substance present in larger amount.
- A solution, can be<u> unsaturated, saturated or supersaturated. An unsaturated solution</u> is a solution that contains less solute that can be dissolved, it doesn't contain the maximum amount of solute.
- <u>A saturated solution</u> is a solution containing the maximum amount of solute that can be dissolved at a given temperature. Any additional solute will remain undissolved in the container.
- <u>A supersaturated solution</u> is a solution created when a solution is carefully cooled because it contains more solute than the solubility allows.
To solve this problem we will apply the concepts related to magnetic flux and induced voltage. This last expression understood as the variation of the magnetic flux over time and, in turn, the magnetic flux expressed as the variation of the magnetic field in a certain area.
Magnetic flux through the circular coil is given as

The induced voltage is the change of the magnetic flux across the time, then

At the same time the magnetic flux through the square coil would be given as,

And the induced voltage EMF will be

Equating both expression we have



Therefore the emf induced in the square coil is 0.23355V
Answer:
Explanation:
Sam mass=75kg
Height is 50m
20° frictionless slope
Horizontal force on Sam is 200N
According to the work energy theorem, the net work done on Sam will be equal to his change in kinetic energy.
Therefore
Wg - Ww =∆K.E
Note initial the body was at rest at top of the slope.
Then, ∆K.E is K.E(final) - K.E(initial)
K.E Is given as ½mv²
Since initial velocity is zero then, K.E(initial ) is zero
Therefore, ∆K.E=½mVf²
Wg is work done by gravity and it is given by using P.E formulas
Wg=mgh
Wg=75×9.8×50
Wg=36750J
Ww is work done by wind and it's is given by using formulae for work
Work=force × distance
Ww=horizontal force × horizontal distance
Using Trig.
TanX=opposite/adjacent
Tan20=h/x
x=h/tan20
x=50/tan20
x=137.37m
Then,
Ww=F×x
Ww=200×137.37
We=27474J
Now applying the formula
Wg - Ww =∆K.E
36750 - 27474 =½×75×Vf²
9276=37.5Vf²
Vf²=9275/37.5
Vf²= 247.36
Vf=√247.36
Vf=15.73m/s