Seismic waves hope this helps.
Answer:

Explanation:
The volume and amount are constant, so we can use Gay-Lussac’s Law:
At constant volume, the pressure exerted by a gas is directly proportional to its temperature.

Data:
p₁ = 1520 Torr; T₁ = 27 °C
p₂ = ?; T₂ = 150 °C
Calculations:
(a) Convert the temperatures to kelvins
T₁ = ( 27 + 273.15) K = 300.15 K
T₂ = (150 + 273.15) K = 423.15 K
(b) Calculate the new pressure

(c) Convert the pressure to atmospheres

Answer:
1.53 atm
Explanation:
From the question given above, the following data were obtained:
Volume = constant
Initial pressure (P₁) = stp = 1 atm
Initial temperature (T₁) = 273 K
Final temperature (T₂) = 144 °C = 144 °C + 273 = 417 K
Final pressure (P₂) =?
Since the volume is constant, the final pressure can be obtained as follow:
P₁ / T₁ = P₂ / T₂
1 / 273 = P₂ / 417
Cross multiply
273 × P₂ = 417
Divide both side by 273
P₂ = 417 / 273
P₂ = 1.53 atm
Therefore, the final pressure (i.e the pressure inside the hot water bottle) is 1.53 atm.
H2SO.Mgslfurmobile phase in this experiment
B- Earth completes a full spin on its axis once every 24 hours.