Answer:
Lattice energy is <em>the energy required to convert a mole of ionic solid into its constituent ions in the gas phase</em>
Explanation:
Lattice energy is usually calculated by the Born-Haber cycle, from the affinity energies and sublimation ethalphy values. It is used as an estimation of the ionic energy strength between the ions in an ionic compound.
It is defined as the energy needed to broke 1 mol of a given ionic compound into its ions in the gaseous state. For example, the lattice energy for sodium chloride (NaCl) is the energy required to separate 1 mol of solid ionic compound (NaCl(s)) and produce the sodium and chlorine ions in the gas phase: Na⁺(g) and Cl⁻(g).
If you are taking about George Washington and George Washington Carver then the difference is one was a president and army leader (George Washington) while the other George Washington Carver was an inventor and botanist that is very well known for his inventions with peanuts. If not one is spelled with an r (George) and the other without (Geoge).
Answer:
I can't draw diagrams on this web site but I can do with numbers I think. So an electron is moved from n = 1 to n = 5. I'm assuming I've interpreted the problem correctly; if not you will need to make a correction. I'm assuming that you know the electron in the n = 1 state is the ground state so the 4th exited state moves it to the n = 5 level.
n = 5 4th excited state
n = 4 3rd excited state
n = 3 2nd excited state
n = 2 1st excited state
n = 1 ground state
Here are the possible spectral lines.
n = 5 to 4, n = 5 to 3, n = 5 to 2, n = 5 to 1 or 4 lines.
n = 4 to 3, 4 to 2, 4 to 1 = 3 lines
n = 3 to 2, 3 to 1 = 2 lines
n = 2 to 1 = 1 line. Add 'em up. I get 10.
b. The Lyman series is from whatever to n = 1. Count the above that end in n = 1.
c.The E for any level is -21.8E-19 Joules/n^2
To find the E for any transition (delta E) take E for upper n and subtract from the E for the lower n and that gives you delta E for the transition.
So for n = 5 to n = 1, use -Efor 5 -(-Efor 1) = + something which I'll leave for you. You could convert that to wavelength in meters with delta E = hc/wavelength. You might want to try it for the Balmer series (n ending in n = 2). I think the red line is about 650 nm.
Explanation:
Answer:
8.0 moles
Explanation:
Since the acid is monoprotic, 1 mole of the acid will be required to stochiometrically react with 1 mole of NaOH.
Using the formula: 
Concentration of acid = ?
Volume of acid = 10 mL
Concentration of base = 1.0 M
Volume of base = 40 mL
mole of acid = 1
mole of base = 1
Substitute into the equation:

Concentration of acid = 40/10 = 4.0 M
To determine the number of moles of acid present in 2.0 liters of the unknown solution:
Number of moles = Molarity x volume
molarity = 4.0 M
Volume = 2.0 Liters
Hence,
Number of moles = 4.0 x 2.0 = 8 moles