1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saul85 [17]
3 years ago
15

true or false Newtons's First Law states "Acceleration depends on the mass of the object and the unbalanced force applied"

Physics
2 answers:
babunello [35]3 years ago
8 0
False, his first law states: An object that's in motion will remain in motion at a constant velocity unless it's acted on by an unbalanced force.

Nady [450]3 years ago
7 0
The answer to your question would be False. Newton's First Law actually states "a body at rest (or in motion) will remain at rest (or in motion) until acted upon by an unbalance force."
You might be interested in
A satellite of mass M = 270kg is in circular orbit around the Earth at an altitude equal to the earth's mean radius (6370 km). A
zubka84 [21]

To solve this problem we will apply the concepts related to Orbital Speed as a function of the universal gravitational constant, the mass of the planet and the orbital distance of the satellite. From finding the velocity it will be possible to calculate the period of the body and finally the gravitational force acting on the satellite.

PART A)

V_{orbital} = \sqrt{\frac{GM_E}{R}}

Here,

M = Mass of Earth

R = Distance from center to the satellite

Replacing with our values we have,

V_{orbital} = \sqrt{\frac{(6.67*10^{-11})(5.972*10^{24})}{(6370*10^3)+(6370*10^3)}}

V_{orbital} = 5591.62m/s

V_{orbital} = 5.591*10^3m/s

PART B) The period of satellite is given as,

T = 2\pi \sqrt{\frac{r^3}{Gm_E}}

T = \frac{2\pi r}{V_{orbital}}

T = \frac{2\pi (2*6370*10^3)}{5.591*10^3}

T = 238.61min

PART C) The gravitational force on the satellite is given by,

F = ma

F = \frac{1}{4} mg

F = \frac{270*9.8}{4}

F = 661.5N

5 0
3 years ago
If an area has all the wolves that it can support the wolf population has reached is what
Liono4ka [1.6K]
The wolf population in that area has reached its carrying capacity.
7 0
3 years ago
Read 2 more answers
Find the resultant force of the following forces :
bezimeni [28]

The resultant of the given forces is; 6√2 N

<h3>How to find the resultant of forces</h3>

We are given the forces as;

10 N along the x-axis which is +10 N in the x-direction

6 N along the y-axis which is +6N in the y-direction

4 N along the negative x-axis which is -4N

Thus;

Resultant force in the x-direction is; 10 - 4 = 6N

Resultant force in the y-direction is; 6N

Thus;

Total resultant force = √(6² + 6²)

Total resultant force = 6√2 N

Read more about finding resultant of a force at; brainly.com/question/14626208

4 0
2 years ago
Read 2 more answers
Land heats up and cools down quickly because...
chubhunter [2.5K]
I would say it reflects the sun easily. That’s also how we see it :)
6 0
3 years ago
A skater is using very low friction rollerblades. A friend throws a Frisbee at her, on the straight line along which she is coas
kupik [55]

Answer:

a)  perfectly inelastic,  b)  collision is inelastic,  c)   elastic  

Explanation:

In this exercise, it is asked to identify what type of shock occurs between the skater and the frisbee, for this we must define a system formed by the skater and the fribee, so that the forces during the crash have been internal and the amount of movement is preserved

Initial instant. Before the skater touches the frisbee

    p₀ = M v₁ + m v₂

where M and m are the masses of the skater and frisbee, respectively

for the final moment they give us several possibilities, in all case the moment is conserved

       p₀ = p_{f}

case a)

Final instant. grabs the frisbee and holds it

    p_{f} = (M + m) v '

     p₀ = p_{f}

We can see that this shock is perfectly inelastic, it holds the fressbee

case b)

final instant.

This case is similar to the previous one, but the final speed of fresbee is zero, therefore this collision is inelastic and the kinetic energy is not conserved.

case c)

final instant. Grab the fressbee and resend it

      p_{f} = M v_{1f} + m v_{2f}

this is an elastic Shock since the equivalent of a rebound of the fressbee, the kinetic energy is conserved.

5 0
2 years ago
Other questions:
  • Direction of waves is parallel to distance of vibration in
    8·1 answer
  • What is the kinetic energy of a 620.0 kg roller coaster moving with a velocity of 9.00 m/s?
    14·2 answers
  • List one way to take advantage of creating even more kinetic energy on this particular technologically advanced field
    14·1 answer
  • What does the delta symbol represent in the equation?
    5·2 answers
  • 20 POINTS!! What does this picture look like ???
    8·1 answer
  • A hot air balloon moves vertically upwards at constant velocity of 1.5 m s−1 . A person standing on the ground below throws a ba
    9·1 answer
  • Activity C (continued from previous page)
    6·1 answer
  • Describe the relationship between atoms and elements,molecules, and compounds.
    12·1 answer
  • A ball is swung in a horizontal circle at a constant speed. Each circle takes 0.85 seconds to complete and the rope is 0.40 m lo
    12·1 answer
  • If 2 ma of current flow in your mp3 player, how long will it take for 1 c of charge to flow?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!