Answer:
center of mass of the two masses will lie at x = 2.52 cm
center of gravity of the two masses will lie at x = 2.52 cm
So center of mass is same as center of gravity because value of gravity is constant here
Explanation:
Position of centre of mass is given as

here we have




now we have



so center of mass of the two masses will lie at x = 2.52 cm
now for center of gravity we can use

here we have




now we have



So center of mass is same as center of gravity because value of gravity is constant here
Answer:
Right Hand Rule
Explanation:
When a charged particle travels in a magnetic field, it experiences a force whose magnitude is given by:

where
q is the charge of the particle
v is the velocity
B is the magnetic field strength
is the angle between the directions of v and B
The direction of the force can be determined by using the Right Hand Rule, as follows:
- index finger: this should be put in the direction of the velocity
- middle finger: this should be put in the direction of the magnetic field
- thumb: this will give the direction of the force -> however, for a negative charge (as the electron) the direction must be reversed, so it will be opposite.
To solve the problem it is necessary to apply energy conservation.
By definition we know that kinetic energy is equal to potential energy, therefore
PE = KE

Where,
m = mass
g = gravitaty constat
v = velocity
h = height
Re-arrange to find h,

Replacing with our values


Therefore the correct answer is C.
Answer:
25%
Explanation:
use F=mg
then use the answer you get from that and plug it into W=Fxh
take that answer and divide it by 400 J and multiply by 100
round to sig figs