For an ideal transformer power loss is assumed to be zero
i.e. the power in primary coil due to input voltage must be equal to power in secondary coil due to output voltage
this can be written in form of equation

here we know that


![i_1 = 10 A{/tex]now we will use above equation[tex]140*3.5 = 10 * V_1](https://tex.z-dn.net/?f=i_1%20%3D%2010%20A%7B%2Ftex%5D%3C%2Fp%3E%3Cp%3Enow%20we%20will%20use%20above%20equation%3C%2Fp%3E%3Cp%3E%5Btex%5D140%2A3.5%20%3D%2010%20%2A%20V_1)

So primary coil voltage is 49 Volts
Answer:
The track's angular velocity is W2 = 4.15 in rpm
Explanation:
Momentum angular can be find
I = m*r^2
P = I*W
So to use the conservation
P1 + P2 = 0
I1*W1 + I2*W2 = 0
Solve to w2 to find the angular velocity
0.240kg*0.30m^2*0.79m/s=-1kg*0.30m^2*W2
W2 = 0.435 rad/s
W2 = 4.15 rpm
Answer: 2.83 J/mol
Explanation:
Heat of solution, sometimes interchangeably called enthalpy of solution, is said to be the energy released or absorbed when the solute dissolves in the solvent. A solute is that which can dissolve in a solvent, to form a solution
Given
No of moles of CaCl = 7.5 mol
Total energy used = 21.2 J
Heat of solution = q/n where
q = total energy
n = number of moles
Heat of solution = 21.2 / 7.5
Heat of solution = 2.83 J/mol
Answer:
3.75 m/s south
Explanation:
Momentum before collision = momentum after collision
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Since the car and truck stick together, v₁ = v₂.
m₁ u₁ + m₂ u₂ = (m₁ + m₂) v
Given m₁ = 1500 kg, u₁ = -15 m/s, m₂ = 4500 kg, and u₂ = 0 m/s:
(1500 kg) (-15 m/s) + (4500 kg) (0 m/s) = (1500 kg + 4500 kg) v
-22500 kg m/s = 6000 kg v
v = -3.75 m/s
The final velocity is 3.75 m/s to the south.