The computation shows that the placw on the hill where the cannonball land is 3.75m.
<h3>How to illustrate the information?</h3>
To find where on the hill the cannonball lands
So 0.15x = 2 + 0.12x - 0.002x²
Taking the LHS expression to the right and rearranging we have:
-0.002x² + 0.12x -.0.15x + 2 = 0.
So we have -0.002x²- 0.03x + 2 = 0
I'll multiply through by -1 so we have
0.002x² + 0.03x -2 = 0.
This is a quadratic equation with two solutions x1 = 25 and x2 = -40 since x cannot be negative x = 25.
The second solution y = 0.15 * 25 = 3.75
Learn more about computations on:
brainly.com/question/4658834
#SPJ4
Complete question:
The flight of a cannonball toward a hill is described by the parabola y = 2 + 0.12x - 0.002x 2 . the hill slopes upward along a path given by y = 0.15x. where on the hill does the cannonball land?
Answer:
For this case we want to check if the true mean for the depth of groves cut into aluminium by a machine is equal to 1.7 (null hypothesis) and the alternative hypothesis would be the complement different from 1.7. And the best system of hypothesis are:
Null hypothesis: 
Alternative hypothesis ![\mu \neq 1.7[/tx]And the best system of hypothesis are:3. This two-sided test: H0: μ = 1.7 mm H1: μ ≠ 1.7 mmStep-by-step explanation:For this case we want to check if the true mean for the depth of groves cut into aluminium by a machine is equal to 1.7 (null hypothesis) and the alternative hypothesis would be the complement different from 1.7. And the best system of hypothesis are:Null hypothesis: [tex]\mu =1.7](https://tex.z-dn.net/?f=%5Cmu%20%5Cneq%201.7%5B%2Ftx%5D%3C%2Fp%3E%3Cp%3EAnd%20the%20best%20system%20of%20hypothesis%20are%3A%3C%2Fp%3E%3Cp%3E3.%20This%20two-sided%20test%3A%0A%3C%2Fp%3E%3Cp%3EH0%3A%20%CE%BC%20%3D%201.7%20mm%0A%3C%2Fp%3E%3Cp%3EH1%3A%20%CE%BC%20%E2%89%A0%201.7%20mm%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EFor%20this%20case%20we%20want%20to%20check%20if%20the%20true%20mean%20for%20the%20depth%20of%20groves%20cut%20into%20aluminium%20by%20a%20machine%20is%20equal%20to%201.7%20%28null%20hypothesis%29%20and%20the%20alternative%20hypothesis%20would%20be%20the%20complement%20different%20from%201.7.%20And%20the%20best%20system%20of%20hypothesis%20are%3A%3C%2Fp%3E%3Cp%3ENull%20hypothesis%3A%20%5Btex%5D%5Cmu%20%3D1.7)
Alternative hypothesis [tex]\mu \neq 1.7[/tx]
And the best system of hypothesis are:
3. This two-sided test:
H0: μ = 1.7 mm
H1: μ ≠ 1.7 mm
So you round to the second decimal place, giving you 43.59