Answer:
The lever arm could decrease or increase depending of the initial angle.
Explanation:
The lever arm d is calculated by:
d = rsin(θ)
where r is the radius and θ the angle between the force and the radius.
So, the increse or decrees of d depends of the sin of the angle θ, if the initial angle is greather than 90° and the angle decrease to an angle closer to 90°, the lever arm will increase but if the initial angle is 90° or lower and the angle decrease, the lever arm will decrease.
Answer:
1472.98 m
Explanation:
Data provided:
Speed of circular looping, v = 340 m/s
Acceleration, a = 8g
here,
g is the acceleration due to the gravity = 9.81 m/s²
Now,
the centripetal acceleration is given as,
r is the radius of the loop
on substituting the respective values, we get
or
r = 1472.98 m
We can solve the problem by using the first law of thermodynamics:

where
is the change in internal energy of the system
is the heat absorbed by the system
is the work done by the system on the surrounding
In this problem, the work done by the system is

with a negative sign because the work is done by the surrounding on the system, while the heat absorbed is

with a negative sign as well because it is released by the system.
Therefore, by using the initial equation, we find

Air pressure changes with altitude because of issues related to gravity. Molecules have more weight the closer they are to the Earth and more of them move to lower elevations as a result; this causes increased pressure because there are more molecules in number and proximity. Conversely, air at higher elevations has less weight, but also forces pressure on those layers below it, resulting in the molecules closer to the Earth supporting more weight, increasing the pressure
<span>` You can consider T to be in units of seconds/step. Frequency is the inverse of period, so
1/T = frequency and has units of steps per second. There will be 60 times as many steps in a minute.</span>