Answer
given,
distance = 140 m
time, t = 3.6 s
moving speed = 53 m/s
a) distance = (average velocity) x time


v₀ + 53 = 77.78
v₀ = 24.78 m/s or 25 m/s
b) 

a = 7.8 m/s²
using equation of motion
v₀² = v₁² + 2 a s
53² = 0²+ 2 x 7.8 x s
s = 180 m
Answer:
mehhvbhhhhhhhehshrbeheherhhehehthsjrjjrhrn
Explanation:
bdbsbdbi
Answer:
Acceleration of Sea Lion is 4.41 g
This is 49% of maximum jet acceleration given as a = 9g
Explanation:
As we know that the radius of the circular loop is given as
R = 0.37 m
The speed of the fish is given as

Now the centripetal acceleration of the sea lion is given as



as we know that

so we have

Now Percentage of this acceleration wrt maximum jet acceleration is given as

%
Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:





