Explanation:
It is given that,
Force, 
Position vector, 
(a) The torque on the particle about the origin is given by :

(b) To find the angle between r and F use dot product formula as :

Hence, this is the required solution.
Answer:
Explanation:
Given that,
Mass of ball m = 2kg
Ball traveling a radius of r1= 1m.
Speed of ball is Vb = 2m/s
Attached cord pulled down at a speed of Vr = 0.5m/s
Final speed V = 4m/s
Let find the transverse component of the final speed using
V² = Vr²+ Vθ²
4² = 0.5² + Vθ²
Vθ² = 4²—0.5²
Vθ² = 15.75
Vθ =√15.75
Vθ = 3.97 m/s.
Using the conservation of angular momentum,
(HA)1 = (HA)2
Mb • Vb • r1 = Mb • Vθ • r2
Mb cancels out
Vb • r1 = Vθ • r2
2 × 1 = 3.97 × r2
r2 = 2/3.97
r2 = 0.504m
The distance r2 to the hole for the ball to reach a maximum speed of 4m/s is 0.504m
The required time,
Using equation of motion
V = ∆r/t
Then,
t = ∆r/Vr
t = (r1—r2) / Vr
t = (1—0.504) / 0.5
t = 0.496/0.5
t = 0.992 second
Answer: c opinion is something ppl just suggest but a theory needs proof before it is confirmed
The instantenous velocity is just the slope of the graph at a certain instant. Since the graph is a straight line, its instantenous velocity is uniform through out. v = dx / dt = (40 - 10) / (50 - 0) = 0.6 m/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
The object is moving, so at different times, it has different displacement. I'm guessing that you probably want to know the displacement at the end of the time on the graph ... 5 seconds.
Displacement is the distance and the direction FROM (the position at the beginning) TO (the position at the end).
At the beginning ... time=0 ... the position is 1 meter.
At the end ... time=5 ... the position is zero.
The distance FROM the beginning TO the end is (zero - 1m) . That's <em>-1m </em>.