De Broglie's identity gives the relationship between the momentum and the wavelength of a particle:

where
p is the particle momentum
m is its mass
v its velocity
h is the Planck constant

is the wavelength
By re-arranging the equation, we get

and by using the data about the proton, given in the text, we can find the proton's wavelength:
Answer:
I only know answer A and it's 2825.28 N/m, with rounding it's 2825.5
Explanation:
Use the m*g*h=1/2*k*x^2 equation
96*9.81*60=1/2*k*2^2
5650.56=2k
5650.56/2=2825.28N/m
Answer:
<em>The y component of his displacement is 11.22 meters</em>
Explanation:
<u>Components of the displacement</u>
The displacement is a vector because it has a magnitude and a direction. Let's suppose a displacement has a magnitude r and a direction θ, measured with respect to the positive x-direction. The horizontal component of the displacement is calculated by:

The vertical component is calculated by:

The hiker has a displacement with magnitude r = 20.51 m at an angle of 33.16 degrees. Substituting in the above equation:


The y component of his displacement is 11.22 meters
False, that does not apply to some