Answer: 9 days
Explanation:
Let the rate of Leaf growth <em>r</em> be defined as,
= 
where <em>A</em> is initial area of the leaf, <em>A1</em> is the final area of the leaf and<em> t</em> is the time taken for the increase in Area.
- Express the proportional relationship in equation.
Given that rate of leaf growth, r is proportional to the surface area of the leaf A. we have r ∝ A.
r = kA, where k is the rate constant.
therefore, k = 
when A = 2
, A1 = 3
so k = 
=
÷ 2
= 0.33 ÷ 2
k = 0.167
- After calculating the rate constant k, we then find the time t when A1 is 5

- we have r = k × A1 =

so, 0.167 × 2 = 
0.33 =
.
t = 3/0.33
Therefore, t = 9 days.
0.4 x 18 = 7.2 kg m/s
The momentum of the bottle after being hit is 0.2 x 25 = 5 kg m/s
7.2 - 5 = 2.2 kg m/s is the motmentum of the ball now
the velocity is 2.2/0.4 = 5.5 m/s
Answer:
the value of the final pressure is 0.168 atm
Explanation:
Given the data in the question;
Let p₁ be initial pressure, v₁ be initial volume.
After expansion, p₂ is final pressure and v₂ is final volume.
So using the following equations;
p₁v₁ = nRT
p₂v₂ = nRT
hence, p₁v₁ = p₂v₂
we find p₂
p₂ = p₁v₁ / v₂
given that; initial volume v₁ = 0.175 m³, Initial pressure p₁ = 0.350 atm,
final volume v₂ = 0.365 m³
we substitute
p₂ = ( 0.350 atm × 0.175 m³ ) / 0.365 m³
p₂ = 0.06125 atm-m³ / 0.365 m³
p₂ = 0.168 atm
Therefore, the value of the final pressure is 0.168 atm
Answer:
A derived quantities is terms of the 7 base quantities via a system of quantity equations which are called SI derived units.
Explanation: there you go:)