Answer:
v = 3 m/s
Explanation:
P is the momentum
m is the mass
v is the velocity
P = m•v
300 = 100•v Divide both sides per 100
300/100 = v
v = 3 m/s
Answer:
Answer 5: Tension
Answer 3: Compression
Answer 4: Example 2
Answer 2: Oceanic Crust and Continental Crust
Answer 1: Continental Crust
Explanation:
Answer:
4000 Hz
Explanation:
An anti-alias filter is usually added in front of the ADC to limit a certain range of input frequencies in order to avoid aliasing. This filter is usually a low pass filter that passes low frequencies but attenuates the high frequencies.
The Nyquist sampling criteria states that the sampling rate should be at least twice the maximum frequency component of the desired signal.
Sampling rate = 2(max input frequency)
From the relation we can find out the cut-off frequency for the anti-aliasing filter.
max input frequency = sampling rate/2
max input frequency = 8100/2 = 4050 Hz
Therefore, 4000 Hz would be an appropriate cut-off frequency for the anti-aliasing filter.
Answer:
40 N
Explanation:
We first need to calculate the acceleration of the tron ball.
Since acceleration, a = (v - u)/t where u = initial velocity of iron ball = 17m/s, v = final velocity of iron ball = 27m/s and t = time taken for the change in velocity = 5 s.
So, a = (v - u)/t
= (27 m/s - 17 m/s)/5 s
= 10 m/s ÷ 5 s
= 2 m/s²
We know force on iron ball, F = ma where m = mass of iron ball = 20 kg and a = acceleration = 2 m/s²
So, F = ma
= 20 kg × 2 m/s²
= 40 kgm/s²
= 40 N
So, the magnitude of the force on the iron ball is 40 N.
A.) Steel.
steel travels 5,060 meters per second,
lead travels 1,402 meters per second,
water travels 1,439 meters per second,
and air depends on temperature.