Answer:
400
Explanation:
Formula used in solution:
The given information:
Solution
Answer:
The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
THAT'S EASY BRO! the answer is the Seat!
Answer:
Wt = 26.84 [N]
Explanation:
In order to solve this problem we must use the definition of work in physics. Which tells us that this is equal to the product of force by distance.
In this case, we must sum the works of the force applied by the box and the friction force that also acts on the box.
The friction force is defined as the product of the normal force by the coefficient of friction.
f = N*μ
where:
N = normal force = m*g [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
f = friction force [N]
μ = friction coefficient = 0.21
f = 72*9.81*0.21
f = 148.32 [N]
Now the total work:
Wt = WF - Wf
where:
Wt = total work [J] (units of Joules)
WF = work by the pushing force [J]
Wf = work done by the friction force [J]
Wt = (160*2.3) - (148.32*2.3)
Wt = 26.84 [N]
Note: The friction force exerts a negative work, because this force is acting in opposite direction to the movement, therefore the negative sign.
Use light-years as the unit of measurement <span />