Answer:
The largest reservoir of phosphorous is sedimentary rock.
Major sources of phosphorous to aquatic ecosystems are fertilizer runoff, sewage leaks, and industrial wastes.
Eccess phosphorous can lead to eutrophication
Explanation:
Phosphorus come from different sources such as aquatic ecosystems and fertilizers used for plants. When these substances containing phosphorus and those from industrial wastes find their way into water bodies, they tend to cause eutrophication, which is the natural enrichment of water bodies.
Also, it is known that a very small portion of phosphoric acid contribute to acid rain in the atmosphere.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The time taken is 
Explanation:
From the question we are told that
The value of 
The the interior temperature is 
The external temperature is 
The required interior temperature is 
The newton cooling law is

=> 
Now integrate both sides we have

Since c is a constant lnC = c will also give a constant so
=>
=>
substituting value


Hence


=> 

Answer:
(A) 0.63 J
(B) 0.15 m
Explanation:
length (L) = 0.75 m
mass (m) =0.42 kg
angular speed (ω) = 4 rad/s
To solve the questions (a) and (b) we first need to calculate the rotational inertia of the rod (I)
I = Ic + m
Ic is the rotational inertia of the rod about an axis passing trough its centre of mass and parallel to the rotational axis
h is the horizontal distance between the center of mass and the rotational axis of the rod
I =
)^{2}[/tex]
I =
)^{2}[/tex])
I = 0.07875 kg.m^{2}
(A) rods kinetic energy = 0.5I
= 0.5 x 0.07875 x
= 0.63 J 0.15 m
(B) from the conservation of energy
initial kinetic energy + initial potential energy = final kinetic energy + final potential energy
Ki + Ui = Kf + Uf
at the maximum height velocity = 0 therefore final kinetic energy = 0
Ki + Ui = Uf
Ki = Uf - Ui
Ki = mg(H-h)
where (H-h) = rise in the center of mass
0.63 = 0.42 x 9.8 x (H-h)
(H-h) = 0.15 m
<u>We are given:</u>
Mass of Neptune = 1.03 * 10²⁶ kg
Distance from the center of Neptune (r) = 2.27 * 10⁷
now, computing the value of the acceleration due to gravity (g)
<u>Finding g:</u>
We know the formula:
g = G(mass of planet) / (r)²
g = [6.67 * 10⁻¹¹ * 1.03*10²⁶] / (2.27*10⁷) [since G is 6.67*10⁻¹¹]
g = (6.87 * 10¹⁵) / (5.15 * 10¹⁴)
which can be rewritten as:
g = (6.87 * 10¹⁵ * 10⁻¹⁴) / 5.15
g = (6.87 * 10¹⁵⁻¹⁴) / 5.15
g = (6.87/5.15) * 10
g = 1.34 * 10
g = 13.4 m/s² <em>(approx)</em>
Explanation:
the weight of the people inside the bus