1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
2 years ago
14

A mass is placed at the end of a spring. It has starting velocity of V & allowed to oscillate freely. If the mass has a star

ting velocity of 2V, what would the period be? Half as long, remains constant, 1/4 as long , 4 times as long, or 2 times as long?
​
Physics
1 answer:
LiRa [457]2 years ago
8 0

Answer:

Equation for SHM can be written

V = w A cos w t        where w is the angular frequency and the velocity is a                                         maximum at t = 0

V1 = w1  A cos w1 t

V2 = w2 A cos w2 t

V2 / V1 = w2 / w1     since cos X t = 1 if t = zero

V2 / V1 = 2 pi f2 / (2 pi f1) = f2 / f1 = T1 / T2

If the velocity is twice as large the period will be 1/2 long

You might be interested in
A player kicks a football from ground level with a velocity of 26.2m/s at an angle of 34.2° above the horizontal. How far back f
Amanda [17]

For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.

For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.

<h3>Explanation</h3>

How long does it take for the ball to reach the goal?

Let the distance between the kicker and the goal be x meters.

Horizontal velocity of the ball will always be 26.2\times\cos{34.2\textdegree} until it lands if there's no air resistance.

The ball will arrive at the goal in \displaystyle \frac{x}{26.2\times\cos{34.2\textdegree}} seconds after it leaves the kicker.

What will be the height of the ball when it reaches the goal?

Consider the equation

\displaystyle h(t) = -\frac{1}{2}\cdot g\cdot t^{2} + v_{0,\;\text{vertical}} \cdot t + h_0.

For this soccer ball:

  • g = 9.81\;\text{m}\cdot\text{s}^{-2},
  • v_{0,\;\text{vertical}} = 26.2\times \sin{34.2\textdegree{}}\;\text{m}\cdot\text{s}^{-2},
  • h_0 = 0 since the player kicks the ball "from ground level."

\displaystyle t=\frac{x}{26.2\times\cos{34.2\textdegree}}

when the ball reaches the goal.

\displaystyle h= - 9.81 \times \frac{x^2}{(26.2\times\cos{34.2\textdegree})^2} + (26.2 \times \sin{34.2\textdegree})\times\frac{x}{26.2\times\cos{34.2\textdegree}} \\\phantom{h} = -\frac{9.81}{(26.2\times\cos{34.2\textdegree})^2}\cdot x^{2} + \frac{\sin{34.2\textdegree}}{\cos{34.2\textdegree}}\cdot x.

Solve this quadratic equation for x, x > 0.

  • x = 65.1 meters when h = 0 meters.
  • x = 6.54 or 58.5 meters when h = 4 meters.

In other words,

  • For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.
  • For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.

3 0
3 years ago
You're driving down the highway late one night at 20 m/s when a deer steps onto the road 38 m in front of you. Your reaction tim
Bingel [31]

Answer:

given,

speed of the car = 20 m/s

final speed of car = 0 m/s

distance between car and the deer = 38 m

reaction time, t = 0.5 s

deceleration of the car = 10 m/s².

a) distance between deer and car

  distance travel in the reaction time

   d₁ = v x t

   d₁ = 20 x 0.5 = 10 m

   distance travel after you apply brake

   using equation of motion

   v² = u² + 2 a s

   0 = 20² - 2 x 10 x s

    s =  20 m

total distance traveled by the car

D = d₁ + d₂

D = 20 + 10 = 30 m

  distance between car and the deer = 38 m - 30 m

                                                              = 8 m

b) now, maximum speed car.

   distance travel in reaction time

    d₁ = s x t

    d₁ = 0.5 V

distance left between them

   d₂ = 38 - d₁

   d₂ = 38 - 0.5 V

   distance travel after you apply brake

   using equation of motion

    v² = u² + 2 a d₂

    0 = (V)² - 2 x 10 x (38 - 0.5 V)

     V² + 10 V - 760 = 0

now, solving the quadratic equation

  x = \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}

  V = \dfrac{-10\pm \sqrt{10^2-4(1)(-760)}}{2(1)}

         V = 23.01 , -33.01

rejecting the negative term.

hence, maximum speed of the car could be V = 23.01 m/s

 

7 0
3 years ago
The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.1
ahrayia [7]

Answer:

The temperature is  T  = 168.44 \ K

Explanation:

From the question ewe are told that

   The rate of heat transferred is    P  = 13.1 \ W

     The surface area is  A = 1.55 \ m^2

      The emissivity of its surface is  e = 0.287

Generally, the rate of heat transfer is mathematically represented as

           H  =  A e \sigma  T^{4}

=>         T  =  \sqrt[4]{\frac{P}{e* \sigma } }

where  \sigma is the Boltzmann constant with value  \sigma  = 5.67*10^{-8} \ W\cdot  m^{-2} \cdot  K^{-4}.

substituting value  

             T  =  \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }

            T  = 168.44 \ K

7 0
3 years ago
Pls help pls pls pls pls
Elza [17]
1.cool down
2.activity log
3.specific warm up
4.activities of daily living
5.planned exercise
6.general warm up
6 0
3 years ago
A current of 9 A flows through an electric device with a resistance of 43 Ω. What must be the applied voltage in this particular
NeTakaya
Answer:
387 volts

Explanation:
Ohm's law is used to relate voltage, current and resistance.
The formula is as follows:V = I * R
where:
V is the applied voltage (measured in volts)
I is the current flowing (measured in amperes)
R is the resistance (measured in ohm)

In the given, we have:
current (I) = 9 amperes
resistance (R) = 43 ohm

Substitute with the givens in the above formula to get the voltage as follows:
V = 9 * 43
V = 387 volts

Hope this helps :)
4 0
3 years ago
Read 2 more answers
Other questions:
  • Which is a transverse wave that requires a medium to move?
    9·2 answers
  • Kathy tests her new sports car by racing with Stan, an experienced racer. Both start from rest, but Kathy leaves the starting li
    11·1 answer
  • Tenemos un muelle sobre el que se ejerce una fuerza de 20 N produciéndose una deformación de 5 cm. Determinar: a) la constante r
    13·1 answer
  • Hi, I am having issues with this physics question. I find it quite complicated to solve and I don't even have the answer to this
    9·1 answer
  • ¿Qué resistencia debe ser conectada en paralelo con una de 20 Ω para hacer una
    5·1 answer
  • Kinetic Energy Assignment: Lab Report
    13·1 answer
  • the law of conservation of momentum states that, if left alone what happens to the total momentum of two interacting objects tha
    5·1 answer
  • _____ are both ways of preserving current energy resources.
    7·1 answer
  • 3. Which resistor experiences a larger voltage drop across it?
    13·1 answer
  • A spacecraft travels at 1.5 X 108 m/s relative to Earth. A process onboard the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!