Answer:
r = 2.031 x 10⁶ m = 2031 km
Explanation:
In order for the asteroid to orbit the planet, the centripetal force must be equal to the gravitational force between asteroid and planet:
Centripetal Force = Gravitational Force
mv²/r = GmM/r²
v² = GM/r
r = GM/v²
where,
r = radial distance = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of Planet = 3.52 x 10¹³ kg
v = tangential speed = 0.034 m/s
Therefore,
r = (6.67 x 10⁻¹¹ N.m²/kg²)(3.52 x 10¹³ kg)/(0.034 m/s)²
<u>r = 2.031 x 10⁶ m = 2031 km</u>
Answer:
a galaxy observed at a distance of 5 billion light-years
A will be the fastest and c the slowest because of the dip it has a is a straight line fastest way to get from a to b is a straight line b is the second fastest and d is last
Answer:According to the Equation (2), centripetal force is proportional to the square of the speed for an object of given mass M rotating in a given radius R.
Explanation:The Period T. The time T required for one complete revolution is called the period. For. constant speed. v = 2π r T holds.
Answer:
True
Explanation:
When a star has reached the main sequence stage, hydrogen is converted into helium by nuclear fusion, . Also, the gravity and pressure are balanced because the star does not radiate more heat than it generates. A star usually spends most of its lifetime at this stage.
The Zero Age Main Sequence is the period during the main sequence when a star stops contracting, and begin to fuse hydrogen in its core.