Answer:
a) 31.4 m/s
b) 50.2 m
Explanation:
a) When an object is free falling, its speed is determined by the gravity force giving it acceleration. Equation for the velocity of free fall started from the rest is:
v = g • t
g - is gravitational acceleration which is 9.81 m/s^2, sometimes rounded to 10
t - is the time of free fall
So:
v = 9.81 m/s^2 • 3.2
v = 31.4 m/s ( if g is rounded to 10, then the velocity is 10 • 3.2 = 32 m/s)
b) To determine the distance crossed in free fall we use the equation:
s = v0 + gt^2/2
v0 - is the starting velocity (since object started fall from rest, its v0 is 0)
s = gt^2/2
s = 9.81 m/s^2 • 3.2^2 / 2
s = 50.2 m (if we round g to 10 then the distance is 10 • 3.2^2/2 = 51.2 meters)
Answer:
A. Repeat the experiment to be sure the results are valid.
Answer:
t = 0.437 s
Explanation:
The speed of sound is a constant that is worth v = 343 m / s
v = d / t
t = d / v
the time it takes for the sound to reach Clark at d = 150 m is
t = 150/343
t = 0.437 s
This same sound takes much longer to reach you
t₂ = 127 10³/343
t₂ = 370 s
<span>The manipulation of natural sounds via the medium of magnetic tape is called "</span>Musique concrete".
Musique concrete refers to an experimental method of melodic composition utilizing recorded sounds as crude material. The strategy was created around 1948 by the French composer Pierre Schaeffer and his partners at the Studio d'Essai ("Experimental Studio") of the French radio framework. The major guideline of musique concrète lies in the collection of different regular sounds recorded on tape (or, initially, on plates) to deliver a montage of sound.