Answer:
Explanation:
This is a limiting reactant problem.
Mg(s)
+
2HCl(aq)
→
MgCl
2
(
aq
)
+ H
2
(
g
)
Determine Moles of Magnesium
Divide the given mass of magnesium by its molar mass (atomic weight on periodic table in g/mol).
4.86
g Mg
×
1
mol Mg
24.3050
g Mg
=
0.200 mol Mg
Determine Moles of 2M Hydrochloric Acid
Convert
100 cm
3
to
100 mL
and then to
0.1 L
.
1 dm
3
=
1 L
Convert
2.00 mol/dm
3
to
2.00 mol/L
Multiply
0.1
L
times
2.00 mol/L
.
100
cm
3
×
1
mL
1
cm
3
×
1
L
1000
mL
=
0.1 L HCl
2.00 mol/dm
3
=
2.00 mol/L
0.1
L
×
2.00
mol
1
L
=
0.200 mol HCl
Multiply the moles of each reactant times the appropriate mole ratio from the balanced equation. Then multiply times the molar mass of hydrogen gas,
2.01588 g/mol
0.200
mol Mg
×
1
mol H
2
1
mol Mg
×
2.01588
g H
2
1
mol H
2
=
0.403 g H
2
0.200
mol HCl
×
1
mol H
2
2
mol HCl
×
2.01588
g H
2
1
mol H
2
=
0.202 g H
2
The limiting reactant is
HCl
, which will produce
0.202 g H
2
under the stated conditions.
pls mark as brainliest ans
Answer: 95 degrees fahrenheit hope this helps :]
Explanation:
Answer:
3.62 g/cm³
Explanation:
density = mass ÷ volume
Therefore, do 12.69 divided by 3.5
Answer:
1 strong acid
2 yes they are dangerous
Explanation:
Since nearly all of it is dissociated in water, it is called a strong acid.
2 yes Concentrated strong acids can cause severe and painful burns. The pain is due in part to the formation of a protein layer, which resists further penetration of the acid