When a carbon is bonded to more than two other carbons, a branch is formed. The smallest branched alkane is isobutane. Notice that isobutane has the same molecular formula, C4H10, as n-butane but has a different structural formula. Two different molecules which have the same molecular formula are isomers.
Depending on how the design is, The bridge will sway, bounce, or move in some way. If the bridge was too stiff the winds would destroy the bridge and cause it to crumble and fall :)
Answer:
Honestly makes no sense sorry :(
Explanation:
I can try though.. There are three types of selectivity possible for any synthesis: (i) Chemoselectivity is deciding which group reacts. (ii) Regioselectivity is where the reaction takes place in that group. (iii) Stereoselectivity is how the group reacts with respect to the stereochemistry of the product.
A stereospecific mechanism specifies the stereochemical outcome of a given reactant, whereas a stereoselective reaction selects products from those made available by the same, non-specific mechanism acting on a given reactant. Of stereoisomeric reactants, each behaves in its own specific way.
I tried to explain it the best I could.
Hopefully this helps you :)
Feel free to correct me If it was wrong
The pressure of a gas is the force that a gas exerts per unit area of the container.
Pressure is defined as force per unit area. Gas molecules are constantly colliding against the walls of the container. The pressure of the gas is the force the gas is exerting on its container.
Since temperature is defined as the average kinetic energy of the molecules of a gas then the higher the temperature, the faster the particles move.
The volume of a container refers the size if the container.
The pressure of a gas is inversely proportional to its volume according to Boyle's law. Thus implies that if the pressure of the gas goes up, the volume has to go down.
For a compound to be called an acid, it must contain H+ and H3O+ when dissolved in water.
For a compound to be called a base, the compound must dissolve in water to yield hydroxide ions.
Learn more: brainly.com/question/11543614
Answer:
Oxygen
Explanation:
· Air decolorization makes use of chromophores’ instability on oxygen to decolorize the oil by air-oxidizing pigments. For example, the carotenoid and chlorophyll in the oil are very unstable because of their structure, which is easy to be discolored under the action of oxygen. However, air decolorization leads to thermal oxidation of the oil, too.