Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
Answer:
50 kg
Explanation:
Data:
Mass of bicycle = 10 kg
F = 168 N
a = 2.8 m/s²
Calculation:
F = ma Divide each side by m, Then
m = F/a
= 168/2.8
= 60 kg
m = mass of bicycle + Naoki's mass. Then
60 = 10 + Naoki's mass Subtract 10 from each side
Naoki's mass = 50 kg
Calcium is used to isolate Rb from molten RbX because calcium has a smaller atomic radius than rubidium.
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. Atomic radii are typically measured in a chemically bound condition since it is challenging to isolated individual atoms in order to measure their radii individually.
Learn more about atomic radius here:
brainly.com/question/13607061
#SPJ4
Answer:
2Na+F2 yields 2NaF is balanced.
Explanation:
There are 2 sodium and 2 fluorine in both reactants and product: In 2NaF the 2 is distributed because it is in the beginning of the compound.
Answer:
The water would be neutral, (usually 7). The salt water would be the same (7) and the vinegar would be very acidic. (probably 2).
Explanation: