Answer: Bromide is many orders of magnitude better than fluoride in leaving group ability
Explanation:
As Size of an atom Increases, the Basicity Decreases this is because if we move downwards from the top of the periodic table to the bottom of the periodic table, the size of an atom increases. As size increases, basicity will decrease, meaning the element will be less likely to act as a base implying that the element will be less likely to share its electrons.
in the same vein. With an increase in size, basicity decreases, making the ability of the leaving group to leave increase to increase . This can be seen in the halogens going down the group from
F--- worst
Cl----fair
Br ----good
I-----excellent
with fluorine having the worst ability to leave than Bromine which is better in terms of the leaving group ability.
Answer:
The charge on a neutron=1+-/neutral
It has a mass 1
The charge on electron is 1-/negative
It's mass is 1/1840
The charge on a proton is 1+
It has a mass 1 too.
Explanation:
Answer:
Iron (II) nitrate is ionic compound
Explanation:
Formula:
Fe(NO₃)₂
Iron (II) nitrate is ionic compound.
Its molecular mass is 179.85 g/mol.
NO⁻₃ is anion while Fe⁺² is cation.
Iron loses its two electron which is accepted by nitrate.
Its molecular formula can be written as FeN₂O₆.
Its color is pale green.
Its melting point is 333.65 K.
It is para magnetic compound.
it is mostly present in non hydrated form.
It is also known as ferric nitrate.
It is used to form sodium amide.
Its is also used catalyst.
0.012moldm⁻³
Explanation:
Given parameters:
Mass of AgNO₃ = 1000mg
Volume of water = 500mL
Unknown:
Molarity of solution = ?
Solution:
The molarity of a solution is the number of moles of a solute dissolved in volume of solvent.
Molarity = 
Number of moles of AgNO₃ = ?
Number of moles = 
Molar mass of AgNO₃ = 108 + 14 + 3(16) = 170g/mol
convert mass to g;
1000mg = 1g
Number of moles =
= 0.00588moles
convert the given volume to dm³;
1000mL = 1dm³;
500mL = 0.5dm³
Now solve;
Molarity =
= 0.012moldm⁻³
learn more:
Molarity brainly.com/question/9324116
#learnwithBrainly
The mass of water produced by the reaction of the 23 g of
is 13.8 g.
The given chemical reaction;

In the given compound above, we can deduce the following;
- molecular mass of
= 28 + (2 x 16) = 60 g - molecular mass of
= 2(18) = 36 g
60 g of
--------- 36 g of water
23 g of
------------- ? of water

Thus, the mass of water produced by the reaction of the 23 g of
is 13.8 g.
- <em>"Your question is not complete, it seems to be missing the following information";</em>
In the reaction of the given compound,
, what mass of water (in grams) is produced by the reaction of 23.0 g of SiO2?
Learn more here:brainly.com/question/13644576