C. Magma from venus mantle erupted as lava.
Explanation:
A volcano is a land form which results from the eruption of molten rocks (lava) on the surface. Volcanic rocks are a special type of igneous rock that forms when molten rock cools and solidifies on the surface.
For a planet like Venus which is presently not active and little to no movement occurs within the plates, the volcanisim must have occurred when the planet was relatively young and it must have been millions of years ago.
It is widely believed that Venus was geologically active in times past. Mantle generated lava must have solidified on the surface in times past to have formed the volcano.
Evaluating other options:
Impact of space objects on Venus would lead to the formation of a crater which is a depression on the surface. The rock would be mostly metamorphic.
If water was ever present in Venus, they would have produced sedimentary rocks instead. The erosive power of water is not high enough to cut through the crust. Also, water would not aid the formation of volcanoes.
Heat is not enough to from volcanoes. Other factors are also in play.
Answer:
Lateral
Explanation:
Is the opposite side of the midline
Explanation:
As a substance melts, and goes from a solid to a liquid state, the kinetic energy of the molecules increases, and the molecules move faster, and they separate further and further away from each other. The intermolecluar forces holding the molecules together become weaker
Answer:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations.The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum
Explanation:
The electron is jumped into higher level and back into lower level by absorbing and releasing the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits. For example if electron jumped from K to L it must absorbed the energy which is equal the energy difference of these two level. The excited electron thus move back to lower energy level which is K by releasing the energy because electron can not stay longer in higher energy level and comes to ground state.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum