Answer:
The height jumped by the person on the moon is 6 times the height jumped by the person on earth.
Explanation:
As we know that the acceleration due to gravity on moon is 1/6 of the acceleration due to gravity on earth.
So, it is false.
Let the mass of man is m and the gravity on moon is g' = g/6.
Let the height jumped on earth is h and the height jumped on moon is h'.
So,
m x g' x h' = m x g x h
g/6 x h' = g x h
h' = 6 h
So, the height jumped by the person is 6 times the height jumped by the person on earth.
A)0
b)magnitude of the force on the car is 500n
Answer:
My scenario would be A Car vs. a guard rail on a road. You have a car that is coming down a Highway at a speed of 43 Mph Miles per hour (69.2018 Kmh)
And it hits a steel guardrail and the car smashes in at the front and the guardrail is only bent while the car has the bumper and the hood along with the headlights and windshield along with the passenger side window break.
Explanation:
This is caused by so much force reacting from one object to another but also depends on molecular density.
Noble gases are the least reactive of all elements. That's because they have eight valence electrons, which fill their outer energy level. This is the most stable arrangement of electrons, so noble gases rarely react with other elements and form compounds. PLZ MARK ME BRAINLIEST
Answer:
The magnitude of the force exerted by the ball on the catcher is 1.9 × 10² N
Explanation:
Hi there!
Let´s find the acceleration of the ball that makes it stop when caught by the catcher. The acceleration can be calculated from the equation of velocity considering that it is constant:
v = v0 + a · t
We know that initially the ball was traveling at 25 m/s, so, if we consider the position of the catcher as the origin of the frame of reference, then, v0 = -25 m/s. We also know that it takes the ball 20 ms (0.02 s) to stop (i.e. to reach a velocity of 0). Then using the equation of velocity:
v = v0 + a · t
0 m/s = -25 m/s + a · 0.020 s
25 m/s/ 0.020 s = a
Now, using the second law of Newton, we can calculate the force exerted by the catcher on the ball:
F = m · a
Where:
F = force.
m = mass of the ball.
a = acceleration.
F = 0.150 kg · (25 m/s/ 0.020 s) = 1.9 × 10² N
According to Newton´s third law, the force exerted by the ball on the catcher will be of equal magnitude but opposite direction. Then, the force exerted by the ball on the catcher will have a magnitude of 1.9 × 10² N.