Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N
Answer:
Minimum height of metal = 5 inches
Explanation:
Volume of the cylindrical metal = πR²H = 125π
cancelling out π on both sides
R²H = 125
Hence it can be deduced that R² = 25 and H = 5
Hence minimum height of metal = 5 inches
Answer:
Construct a quadrilateral ABCD, where
Construct a quadrilateral ABCD, whereAB = 4 cm, BC = 5 cm, CD = 6.5 cm and angle B = 105° and angle C = 80°
<span>Strong nuclear forces hold the nucleus of an atom together. Weak nuclear forces are involved when certain types of atoms break down.</span>
Efficiency = Power Output / Power Input
Power Input = Rate of Energy input = 44.4 MJ/kg * 5 kg/h
= 222 MJ/h
But 1 hour = 3600seconds
222 MJ/h = 222 MJ/3600s = 0.061667 MW J/s = Watts
Power input = 0.061667 MW = 61 667 W
From Efficiency = Power Output / Power Input
28% = Power Output / 61667
Power Output = 0.28 * 61667
Power Output = 17266.76 W
Power Output ≈ 17 267 W
Rate of heat rejection = Power Input - Power Output
= 61667 - 17267 = 44400 W
Rate of heat rejection = 44 400W.