Answer:
Ive seen that pfp on google BUT its aight ig
Explanation:
Answer:
another diamond ....theres nothing else that can that I know of.
In order to answer this question, we are going to look at the molar ratio between H2O and H2, we can see that by analyzing the numbers in front of the compounds, and we can see that the molar ratio is 2:2, this means that for every 2 moles of water decomposing, we will end up with 2 moles of H2 being produced, therefore the same amount of moles for H2O will be the same amount of moles of H2, which means that if we have 100 moles of H2O being decomposed, we will also have 100 moles of H2 being produced.
At equivalence there is no more HA and no more NaOH, for this particular reaction. So that means we have a beaker of NaA and H2O. The H2O contributes 1 x 10-7 M hydrogen ion and hydroxide ion. But NaA is completely soluble because group 1 ion compounds are always soluble. So NaA breaks apart in water and it just so happens to be in water. So now NaA is broken up. The Na+ doesn't change the pH but the A- does change the pH. Remember that the A anion is from a weak acid. That means it will easily attract a hydrogen ion if one is available. What do you know? The A anion is in a beaker of H+ ions! So the A- will attract H+ and become HA. When this happens, it leaves OH-, creating a basic solution, as shown below.
In a solution of KBr and water; KBr is the solute and water is the solvent;
Therefore; to achieve 3% by mass; it means we are going to have 3% of the mass being the solute and the other 97 % being the solvent.
Thus; KBr (solute) = 3/100 × 300 (total mass) = 9 g
Hence; the appropriate masses will be; 9.00 g of KBr and 291 g of water.