Answer:
The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted.
The possibility for this answer would be E.
At 218 °C, solid NH₄SH decomposes to form 0.011 M NH₃ and H₂S, as given by its equilibrium constant.
<h3>What is the equilibrium constant?</h3>
The equilibrium constant (Keq) is the ratio of the product of the concentrations of the products to the product of the concentrations of the reactants, all raised to their stoichiometric coefficients.
Only gases and aqueous species are included.
- Step 1. Make an ICE chart.
NH₄SH(s) ⇋ NH₃(g) + H₂S(g)
I 0 0
C +x +x
E x x
- Step 2. Write the equilibrium constant.
Keq = 1.2 × 10⁻⁴ = [NH₃] [H₂S] = x²
x = 0.011 M
At 218 °C, solid NH₄SH decomposes to form 0.011 M NH₃ and H₂S, as given by its equilibrium constant.
Learn more about equilibrium here: brainly.com/question/5081082
#SPJ1
Note the signs of equilibrium:-
- Reaction don't procede forward or backward
- Concentration of products and reactants remains same .
So
if
Concentration of A is 2M then concentration of B should be same .
So equilibrium constant K is 1
![\\ \rm\rightarrowtail K=\dfrac{[Products]^a}{[Reactants]^b}](https://tex.z-dn.net/?f=%5C%5C%20%5Crm%5Crightarrowtail%20K%3D%5Cdfrac%7B%5BProducts%5D%5Ea%7D%7B%5BReactants%5D%5Eb%7D)
So