<span>A full valence electron shell.</span>
Answer:
See explanation
Explanation:
Atomic size increases down the group due to the addition of more shells.
As more shells are added and repulsion of inner electrons become more significant, atomic size increases down the group. However, across the period, atomic size decreases due to increase in effective nuclear charge without any increase in the number of shells. This causes increased attraction between the nucleus and the outermost shell thereby decreasing the size of the atom.
Ionization energy decreases down the group because the outermost electron is more shielded by inner electrons making it easier for this outermost electron to be lost. Across the period, ionization energy increases due to increase in effective nuclear charge which makes it more difficult to remove the outermost electron due to increased nuclear attraction.
Losing electrons and forming positive ions
Answer:
2.53 L is the volume of H₂ needed
Explanation:
The reaction is: C₁₈H₃₀O₂ + 3H₂ → C₁₈H₃₆O₂
By the way we can say, that 1 mol of linolenic acid reacts with 3 moles of oxygen in order to produce, 1 mol of stearic acid.
By stoichiometry, ratio is 1:3
Let's convert the mass of the linolenic acid to moles:
10.5 g . 1 mol / 278.42 g = 0.0377 moles
We apply a rule of three:
1 mol of linolenic acid needs 3 moles of H₂ to react
Then, 0.0377 moles will react with (0.0377 . 3 )/1 = 0.113 moles of hydrogen
We apply the Ideal Gases Law to find out the volume (condition of measure are STP) → P . V = n . R . T → V = ( n . R .T ) / P
V = (0.113 mol . 0.082 L.atm/mol.K . 273.15K) 1 atm = 2.53 L