All of the above. They all right
We have the equation of motion
, where s is the displacement, a is the acceleration, u is the initial velocity and t is the time taken.
Here s = 300 m, u = 0 m/s, a = 9.81
Substituting

Now we have v = u+at, where v is the final velocity
Here u = 0 m/s, a= 9.81
and t = 7.82 seconds
Substituting
v = 0+9.8*7.82 = 76.68 m/s
The speed with which the penny strikes the ground = 76.68 m/s.
We can use the formula of the moment of inertia given by:

Where:
r = Distance from the point about which the torque is being measured to the point where the force is applied
F = Force
I = Moment of inertia
α = Angular acceleration
So:

Answer:
12 rad/s²
A proton is held at rest in a uniform electric field. When it is released, the proton will lose its kinetic energy.
Kinetic energy
The energy an object has as a result of motion is known as kinetic energy in physics. It is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body holds onto the kinetic energy it acquired during its acceleration until its speed changes. The body exerts the same amount of effort when slowing down from its current pace to a condition of rest. Formally, kinetic energy is any term that includes a derivative with respect to time in the Lagrangian of a system.
To learn more about kinetic energy refer here:
brainly.com/question/11301578
#SPJ4
Oxygen and carbon dioxide