Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
To solve this problem, we will get f and then we will use it to calculate the power.
So, for this farsighted person,
do = 25 cm and di = -80
Therefore:
1/f = (1/25) + (1/-80) = 0.00275 = 0.275 m
Power = 1/f = 1/0.275 = +3.6363 Diopeters.
This means that the lens is converging.
The cup is acted upon by an unbalanced force which is the cars acceleration, but before it was an object at rest that stayed at rest. This jet propels their body forward.
Volume will decrease if the heat remains constant
Using the equation E = hc/λ we can find out how much energy a single photon of wavelength 193 nm has. E = Planck Constant * Speed of Light/193 nm