Kinetic energy is the energy applied or present in a moving object. According to Newton's second law of motion the magnitude of acceleration of an object is proportional to the magnitude of the net force but inversely proportional to its mass. So the Kinetic Energy of a moving car of small vehicle is greater than the large vehicle if both are applied with the same net force. The greater the Kinetic Energy the longer the stopping distance
Answer:
1793.7m
Explanation:
From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.
Now the kinetic energy; is
K.E = 1/2 × m × v2
Where m is mass
v is velocity
Hence.
K.E = 1/2 × 2.25 × (187.5)^2
Now this should be same with the potential energy which is given as;
P.E = m× g× h
Where m is mass of object
g is acceleration of free fall due to gravity = 9.8m/S2
h is maximum height substain by the object.
Hence P.E = 2.25 × 9.8 × h
From the foregoing analysis of energy conversation it implies;
1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h
=> 1/2 × (187.5)^2 = 9.8 × h
=>1/2 × (187.5)^2 / 9.8 = h
=> 1793.69m = h
h= 1793.69m
h =1793.7m to 1 decimal place
Answer:
The correct answer is A. Vibration.
Explanation:
Mechanical waves is formed by the oscillation of matter and therefore transfer energy from one medium to the other. Unlike electromagnetic waves, mechanical waves need some medium to propagate. It requires an initial energy input and thus carries this energy when it propagates. There are three types of mechanical waves namely transverse waves, longitudinal waves and surface waves. Examples of such waves are sound waves, water waves and seismic waves.
Answer:
no where is the main part of the question dude