Answer:
7066kg/m³
Explanation:
The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:
Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)
= 7066kg/m³
Explanation:
Answer:
x = 4,138 m
Explanation:
For this exercise, let's use the rotational equilibrium equation.
Let's fix our frame of reference on the left side of the pivot, the positive direction for anti-clockwise rotation
∑ τ = 0
n₁ 0 - W L / 2 + n₂ 4 - W_woman x = 0
x = (- W L / 2 + 4n2) / W_woman
Let's reduce the magnitudes to the SI System
M = 6 lbs (1 kg / 2.2 lb) = 2.72 kg
M_woman = 130 lbs = 59.09 kg
Let's write the transnational equilibrium equation
n₁ + n₂ - W - W_woman = 0
n₁ + n₂ = W + W_woman
n₁ + n₂ = (2.72 + 59.09) 9.8
At the point where the system begins to rotate, pivot 1 has no force on it, so its relation must be zero (n₁ = 0)
n₂ = 605,738 N
Let's calculate
x = (-2.72 9.8 6/2 + 4 605.738) / 59.09 9.8
x = 4,138 m
Answer:
1 because I looked it up for sure
<h3>Answer;</h3>
<em>Energy is transferred.</em>
<h3>Explanation;</h3>
- Work is the force applied over a given distance, in other words work is the product of force and distance. That is; Work = force × distance.
- Work is measured in Joules.
- Energy on the other hand, is the ability to do work.
- According to the principle of work-energy a change in the kinetic energy is equivalent to the net work don e by the object. Therefore, when work is being done energy is being transferred from one point to another.
Answer: The velocity of the ball is 30.0 m/s
This can be calculated by using the value of acceleration as 10.0 m/s2 in free fall and the given time of 3.0 seconds. To get the
velocity, one will have to multiply the acceleration with the given time and the
quotient would result to 30.0 m/s. Mostly all object regardless of their mass,
fall to earth with the same acceleration in the absence of air resistance and as
the child drops the ball from a window, it gains speed as it falls.