We're so good here on Brainly, we can answer it
even WITHOUT seeing the choices.
Time = (displacement) / (magnitude of average velocity) .
Answer:

Explanation:
As we know that when electron moved in electric field then work done by electric field must be equal to the change in kinetic energy of the electron
So here we have to find the work done by electric field on moving electron
So we have



now the distance moved by the electron is given as

so we have



now we have to convert it into keV units
so we have


Answer:
P_(pump) = 98,000 Pa
Explanation:
We are given;
h2 = 30m
h1 = 20m
Density; ρ = 1000 kg/m³
First of all, we know that the sum of the pressures in the tank and the pump is equal to that of the Nozzle,
Thus, it can be expressed as;
P_(tank)+ P_(pump) = P_(nozzle)
Now, the pressure would be given by;
P = ρgh
So,
ρgh_1 + P_(pump) = ρgh_2
Thus,
P_(pump) = ρg(h_2 - h_1)
Plugging in the relevant values to obtain;
P_(pump) = 1000•9.8(30 - 20)
P_(pump) = 98,000 Pa
Answer:
Explanation:
As the sum of the two right directed forces match exactly the left directed force, the only unbalanced force, and thus the net force, is the upward 25 N force.
Explanation:
Spring is stretched by force f to distance
"X"
now here by force balance we can say
f = kx
k = !
now here we will we say that energy stored in the spring will convert into kinetic energy
kx² = mv²
(x² = mv²
now solving above equation we will have
PART 2)
now for half of the extension again we can use energy conservation
ka²-k(x/2)² = 1 {mv²
¾fx=mv²
now the speed is given as
3 fr 4m V=