Volume of 1 mole of any gas under STP = 22.4 L,
so
0.15 mol*22.4 L/1 mol = 3.36 L of H2
47/3 which could be simplified to 15.6
The most suitable answer is C becuase they would gain two elctrons to atain that stable OCTET thus becoming a anion with a charge of -2 and by virtue oxidation states of -2. There is however an exception with oxygen in two cases. But I still remain that the best answer would be C
1) Reaction
<span>NH4Cl(s) ---> NH3(g) + HCl(g)
2) equilibrium equation, Kc
Kc = [NH3] * [HCl]
3) Table of equilibrium formation
step concentrations
</span>
<span> NH4Cl(s) NH3(g) HCl(g)
start 1.000 mole 0 0
react - x
produce +x + x
------------------ ---------- -----------
end 1 - x +x +x
1 - x = 0.3 => x = 1 - 0.3 = 0.7
[NH3] = [HCl] = 0.7/0.5 liter = 1.4 (I used 0.500 dm^3 = 0.5 liter)
4) Equilibrium equation:
Kc = [NH3] [HCl] = (1.4)^2 = 1.96
Which is the number that you were looking for.
Answer: Kc = 1.96
</span>
Answer:
7.875 grams
Explanation:
You multiply 175 g by .045
This gives you 7.875 grams of lactose