Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm
Answer:
They will both hit the ground at the same time
Explanation:
Answer:
Difference in height = 7.5 cm
Explanation:
We are given;.
Height of ethyl alcohol;h2 = 20 cm = 0.2 m
Density of glycerin: ρ1 = 1260 kg/m³
Density of ethyl alcohol; ρ2 = 790 kg/m³
To get the difference in height, the pressure at the top of the open end must be equal to the pressure at the point where the liquids do not mix since both points will be at different levels after the pouring.
Thus;
P1 = P2
Formula for pressure is; P = ρgh
Thus;
ρ1 × g × h1 = ρ2 × g × h2
g will cancel out to give;
ρ1 × h1 = ρ2× h2
Making h1 the subject, we have;
h1 = (ρ2× h2)/ρ1
h1 = (790 × 0.2)/1260
h1 = 0.125 m
Difference in height will be;
Δh = h2 - h1
Δh = 0.2 - 0.125
Δh = 0.075 m = 7.5 cm
Answer:
2. at the lowest point
Explanation:
The motion of the pendulum is a continuous conversion between kinetic energy (KE) and gravitational potential energy (GPE). This is because the mechanical energy of the pendulum, which is sum of KE and GPE, is constant:
E = KE + GPE = const.
Therefore, when KE is maximum, GPE is minimum, and viceversa.
So, the point of the motion where the KE is maximum is where the GPE is minimum: and since the GPE is directly proportional to the heigth of the bob:

we see that GPE is minimum when the bob is at the lowest point,so the correct answer is
2. at the lowest point