The answer is A. When the the temperature increases the kinetic energy increases
(A) The total initial momentum of the system is
(1.30 kg) (27.0 m/s) + (23.0 kg) (0 m/s) = 35.1 kg•m/s
(B) Momentum is conserved, so that the total momentum of the system after the collision is
35.1 kg•m/s = (1.30 kg + 23.0 kg) <em>v</em>
where <em>v</em> is the speed of the combined blocks. Solving for <em>v</em> gives
<em>v</em> = (35.1 kg•m/s) / (24.3 kg) ≈ 1.44 m/s
(C) The kinetic energy of the system after the collision is
1/2 (1.30 kg + 23.0 kg) (1.44 m/s)² ≈ 25.4 J
and before the collision, it is
1/2 (1.30 kg) (27.0 m/s)² ≈ 474 J
so that the change in kinetic energy is
∆<em>K</em> = 25.4 J - 474 J ≈ -449 J
Answer:
It depends on the climate and wind speed at the time.
If the climate is hot and no breeze it will move slower.
If it is cold and very windy it will move rapidly.
Statements 1, 3, and 5 are true.
(A, C, and E)
Answer:

Explanation:
= Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of person
The force on the person will balance the gravitational force

The acceleration that the Earth will feel is 