Answer:
Straight line parallel to time axis.
Explanation:
The slope of the position time graph gives the velocity.
As the man is still, that means the velocity is zero. So, the slope of the graph is zero. It is a straight line parallel to time axis.
Answer:
1) F = 24 N
2) Distance = 1 m
Explanation:
We are given;
Mass; m = 120 g = 0.12 kg
Initial velocity; u = 20 m/s
Final velocity; v = 0 m/s since it came to rest.
Time; t = 0.1 s
We can calculate acceleration from Newton's first equation of motion;
a = (v - u)/t
a = (0 - 20)/0.1
a = -200 m/s²
1) magnitude of the resistance will be;
F = ma
F = 0.12 × (-200)
F = -24 N
Since, we are dealing with the magnitude, we will take the absolute value. Thus, F = 24 N
2) To find the distance moved by the bullet, we know that;
Distance = Average speed × time
Thus;
Distance = ((v + u)/2) × t
Distance = ((0 + 20)/2) × 0.1
Distance = 1 m
Answer: A. a basketball being shot toward the basket
Explanation: The definition of projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. So, the basketball is the object being thrown and the person throwing the ball is aiming it to go into the basket making that the path of trajectory. Hope that makes sense and helps!
Answer:
So A we cant sadly do because we cant draw. B is going to be kinetic. Thats because static friction means it stays in one place, for kinetic it means moving. So it will be 0.05 as the coefficient of the friction. Sadly, I cannot calculate C. You will have to use trigonemetry but I cannot fit that big an explanation.
Answer to A: the free body diagram would be the ski things inclined with gravity, friction, and air resistance. I except you know which directions
Answer to B: Kinetic friction is the answer.
Answer to C: Find on own, I cannot write super big explanations - use trigonometry.