Any object that is launched as a projectile will lose speed and, as a result, altitude, as it travels through the air. The rate at which the object loses speed and altitude depends on the amount of force that way applied to it when it was launched. It is also dependent on the size and shape of the item. This is why something like, say, a football is much faster to fall to the ground than a bullet.
Answer:
All these statement are true
Explanation:
Gravity will be acting like a centripetal force for the circular motion of object around earth, which makes it perpendicular to the velocity vector. In the case of elliptical motion, gravity can still be divided into 2 vectors, one parallel and the other perpendicular to the velocity. At the nearest point in elliptical motion, gravity is directly perpendicular to velocity just like in circular motion. At the farthest point, the potential energy is minimized and has been converted into kinetic energy. Therefore at this point the speed is greatest.
Answer:
Rachel(2.5,0)
ball(6.5,4.7)
b.R=10.15m/s, 27.57deg
Explanation:
The reference angle of Rachel is 0
resolving rachel's speed to the horizontal, we have
Ux=2.5cos0
Ux=2.5m/s
resolving rachel's speed to the vertical we have,
Uy=2.5sin0
Uy=0
for the ball
resolving the speed to its horizontal component
Ux=8cos36
Ux=6.5m/s
Uy=8sin36
Uy=4.7m/s
Rachel(2.5,0)
ball(6.5,4.7)
To get the resultant of their speed
Add the horizontal speed of rachel to that of the ball to get the total horizontal speed
Add the vertical speed of rachel and the ball to get the total vertical speed component
TUx=2.5+6.5=9M/S
TUy=0+4.7=4.7m/s
R=
R=
R=
R=10.15m/s
the direction
tan
=TUy/TUx
tan
=4.7/9
=tan^-1(0.522)
=27.57deg
10.7 or round it up to 11
Answer:
a) 1.95 m/s
b) 5.56 m
Explanation:
Given that:
Velocity of the skier
= 14.3 m/s
For the skier moving in the direction of the wave, we have:
Period (T) = 0.450 s
Relative velocity (V) of the skier in regard with the wave = 
where:
= velocity of the skier
= velocity of the wave
The wavelength
can be written as:

---------------> Equation (1)
For the skier moving opposite in the direction of the wave, we have:
Period (T) = 0.342 s
Relative velocity (V) of the skier in regard with the wave = 
The wavelength
can be written as:

------------------> Equation 2
Equating equation (1) and equation (2) and substituting
= 14.3 m/s ; we have:


Collecting the like terms; we have:







b)
The Wavelength of the wave can be calculated using : 



λ ≅ 5.56 m