Answer:
The required mass to prepare 2.5 L of 1.0 M NaOH solution is 100 g
Explanation:
We do this by preparing the equation:
Mass = concentration (mol/L) x volume (L) x Molar mass
Mass = 1.0 M x 2.5 L x 40 g/mol
Mass = 100 g
The specific gravity of the solution is 1.07, which contains 5.34g for a 5.00ml sample.
Density of a substance is
Density = Mass / Volume
= 5.34/5
= 1.07
Density of water = 1
Specific gravity = Density of substance/density of solvent
Specific gravity = 1.07 / 1
Specific gravity = 1.07
Specific gravity, often known as relative density, is the ratio of a substance's density to that of an industry standard.
If a material has a relative density that is less than 1 compared to the reference, it is less dense than the reference; if it is larger than 1, it is denser. Identical volumes of the two substances have the same mass if the relative densities are equal, or exactly 1.
To learn more about specific gravity click the given link
brainly.com/question/543765
#SPJ4
Answer:

Explanation:
Hello!
In this case, since the reaction between sulfuric acid and aluminum hydroxide is:

Whereas the ratio of sulfuric acid to aluminum hydroxide is 3:2; thus, we first compute the moles of sulfuric acid that complete react with 3.209 g of aluminum hydroxide:

Then, given the molarity, it is possible to obtain the milliliters as follows:

Best regards!
Answer:
[Zn²⁺] = 4.78x10⁻¹⁰M
Explanation:
Based on the reaction:
ZnBr₂(aq) + K₂CO₃(aq) → ZnCO₃(s) + 2KBr(aq)
The zinc added produce the insoluble ZnCO₃ with Ksp = 1.46x10⁻¹⁰:
1.46x10⁻¹⁰ = [Zn²⁺] [CO₃²⁻]
We can find the moles of ZnBr₂ added = Moles of Zn²⁺ and moles of K₂CO₃ = Moles of CO₃²⁻ to find the moles of CO₃²⁻ that remains in solution, thus:
<em>Moles ZnB₂ (Molar mass: 225.2g/mol) = Moles Zn²⁺:</em>
6.63g ZnBr₂ * (1mol / 225.2g) = 0.02944moles Zn²⁺
<em>Moles K₂CO₃ = Moles CO₃²⁻:</em>
0.100L * (0.60mol/L) = 0.060 moles CO₃²⁻
Moles CO₃²⁻ in excess: 0.0600moles CO₃²⁻ - 0.02944moles =
0.03056moles CO₃²⁻ / 0.100L = 0.3056M = [CO₃²⁻]
Replacing in Ksp expression:
1.46x10⁻¹⁰ = [Zn²⁺] [0.3056M]
<h3>[Zn²⁺] = 4.78x10⁻¹⁰M</h3>
The ratios which are needed to determine the mass of oxygen produced from the decomposition of 10 grams of potassium chlorate are;
- 31.998 g O2 : 1 mole O2
- 3 mole O2 : 2 mole KClO3
- 112.55 g KClO31 mole KClO3
From stoichiometry;
- We can conclude that according to the reaction;
3 moles of oxygen requires 2 moles of KClO3 to be produced.
And from molar mass analysis;
- 31.998 g O2 is equivalent to 1 mole O2
- O2112.55 g KClO3 is equivalent to 1 mole KClO3
Read more:
brainly.com/question/9920155