Answer:
52.99 kPa
Explanation:
Initial volume V1 = 2.7 L
Initial Pressure P1 = 78.5 kPa
Final Volume V2 = 4.0L
Final Pressure P2 = ?
Temperature is constant
The relationship between these quantities is given by the mathematical expression of Boyles law. This is given as;
V1P1 = V2P2
P2 = V1P1 / V2
P2 = 2.7 * 78.5 / 4.0
P2 = 52.99 kPa
Answer:
Those individuals with advantageous traits are more likely to survive and reproduce. The survivors pass down these advantageous traits to their offspring.
Explanation:
Answer:
1.) 13 g C₄H₁₀
2.) 41 g CO₂
Explanation:
To find the mass of propane (C₄H₁₀) and carbon dioxide (CO₂), you need to (1) convert mass O₂ to moles O₂ (via molar mass), then (2) convert moles O₂ to moles C₄H₁₀/CO₂ (via mole-to-mole ratio from equation coefficients), and then (3) convert moles C₄H₁₀/CO₂ to mass C₄H₁₀/CO₂ (via molar mass). It is important to arrange the ratios in a way that allows for the cancellation of units. The final answers should have 2 sig figs to match the sig figs of the given value.
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
2 C₄H₁₀ + 13 O₂ ----> 8 CO₂ + 10 H₂O
48 g O₂ 1 mole 2 moles C₄H₁₀ 58.124 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 13 g C₄H₁₀
48 g O₂ 1 mole 8 moles CO₂ 44.007 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 41 g CO₂
Answer: electronic configuration
Explanation:
Answer:
A large quantity
Explanation:
A large quantity will take much longer to melt compared to a small quantity of the same matter.
The rate of melt of a substance is particularly a function of the nature of the substance and the amount of energy supplied to it.
If we assume that we are dealing with different quantities of the same substance, then the one that has more mass will melt faster because less energy would be required to change its state.
A large quantity of matter will take more time to melt.