Hydrogen gas is produced when dilute hydrochloric acid is added to a reactive metal.
Balanced molecular equation of sodim metal with hydrochloric acid:
2Na(s) + 2HCl(aq) → 2NaCl(aq) + H₂(g).
Ionic equation: 2Na(s) + 2H⁺(aq) + 2Cl⁻(aq) → 2Na⁺ + 2Cl⁻(aq) + H₂(g).
Net ionic equation: 2Na(s) + 2H⁺(aq) → 2Na⁺(aq) + H₂(g).
Sodium is oxidized from oxidation number 0 (Na) to oxidation number +1, hydrogen is reduced from oxidation number +1 to oxidation number 0 (hydrogen gas H₂).
Another example:
Balanced chemical equation: Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g)
Word equation: zinc + hydrochloric acid → zinc chloride + hydrogen gas
More about hydrogen gas:brainly.com/question/24433860
#SPJ4
Answer:
Option 2 and 4 are correct
Explanation:
The reactants in the attached image have more enthalpy and hence less stability as they are more reactive. Thus, Product is more stable than the reactants.
This is an addition reaction in which two reactants add up to form the product.
Very less activation energy is required as the reactants themselves are unstable, possess high energy and hence are very reactive.
Reactants have more energy than the products.
The change of the statue of liberty from copper to green is an example of a chemical change.
<h3>Physical and chemical change</h3>
A physical change does not involve the formation of new substances and the composition of the substance does not change. However, in a chemical change, a new substance is formed and the composition of the substance changes.
The statement that reflect a chemical change is;
- The Statue of Liberty’s metal tarnishes from copper to green.
Learn more about physical and chemical change: brainly.com/question/13316655
Answer is: <span>the mass of the glucose is 81,07 grams.
</span>c(C₆H₁₂O₆) = 0,3 M = 0,3 mol/L.
V(C₆H₁₂O₆) = 1,500 L.
n(C₆H₁₂O₆) = c(C₆H₁₂O₆) · V(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 0,3 mol/L · 1,5 L.
n(C₆H₁₂O₆) = 0,45 mol.
m(C₆H₁₂O₆) = n(C₆H₁₂O₆) · M(C₆H₁₂O₆).
m(C₆H₁₂O₆) = 0,45 mol · 180,156 g/mol.
m(C₆H₁₂O₆) = 81,07 g.