3*2 = 6 ;
4^2 = 16;
/-2/ = +2;
16*2 = 32 ;
5 + 6 - 32 = 11 - 32 = -21;
The right answer is D) -21 ;
Let the 1st number be x; 2nd number be y; 3rd number be z.
x + y + z = 79
x = number we are looking for.
y = x * 5 ==> 5 times the first
z = x + 16 ==> 16 more than the first
Therefor,
x + (x * 5) + (x+16) = 79
1st step, multiply the 2nd number: x * 5 = 5x
x + 5x + x + 16 = 79
Add all like numbers:
7x + 16 = 79
To get x, transfer 16 to the other side and change its sign from positive to negative.
7x = 79 - 16
7x = 63
To get x, divide both sides by 7
7x/7 = 63/7
x = 9
To check. Substitute x by 9.
x + (x * 5) + (x+16) = 79
9 + (9 * 5) + (9 + 16) = 79
9 + 45 + 25 = 79
79 = 79 equal. value of x is correct.
Answer:B
Step-by-step explanation: Alternate exterior angles theorem
Answer:

Step-by-step explanation:
we have
<em>The equation of the first line</em>
------> equation A
<em>The equation of the second line</em>
------> equation B
Solve the system of equations by elimination
Multiply equation A by -4 both sides
--------> equation C
Adds equation B and equation C

<em>Find the value of x</em>
substitute the value of y


Multiply by 3 both sides


therefore
The solution to the system of equations is the point 
9514 1404 393
Answer:
- 6x +y = -6
- 6x -y = 8
- 5x +y = 13
Step-by-step explanation:
To rewrite these equations from point-slope form to standard form, you can do the following:
- eliminate parentheses
- subtract the x-term
- subtract the constant on the left
- if the coefficient of x is negative, multiply by -1
Of course, any operation you do must be done <em>to both sides of the equation</em>.
__
1. y -6 = -6(x +2)
y -6 = -6x -12 . . . . . eliminate parentheses
6x +y -6 = -12 . . . . . add 6x
6x +y = -6 . . . . . . . . add 6
__
2. y +2 = 6(x -1)
y +2 = 6x -6
-6x +y +2 = -6
-6x +y = -8
6x -y = 8 . . . . . . . . multiply by -1
__
3. y -3 = -5(x -2)
y -3 = -5x +10
5x +y -3 = 10
5x +y = 13
_____
<em>Additional comment</em>
The "standard form" of a linear equation is ax+by=c for integers a, b, c. The leading coefficient (generally, 'a') should be positive, and all coefficients should be mutually prime (have no common factors). That is why we multiply by -1 in problem 2.