Answer:
The real solutions are
![x=\sqrt[6]{6}\approx 1.35\\\\\:x=-\sqrt[6]{6}\approx -1.35](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B6%5D%7B6%7D%5Capprox%201.35%5C%5C%5C%5C%5C%3Ax%3D-%5Csqrt%5B6%5D%7B6%7D%5Capprox%20-1.35)
Step-by-step explanation:
The solution, or root, of an equation is any value or set of values that can be substituted into the equation to make it a true statement.
To find the real solutions of the equation
:
![\mathrm{Divide\:both\:sides\:by\:}5\\\\\frac{5x^6}{5}=\frac{30}{5}\\\\\mathrm{Simplify}\\\\x^6=6\\\\\mathrm{For\:}x^n=f\left(a\right)\mathrm{,\:n\:is\:even,\:the\:solutions\:are\:}x=\sqrt[n]{f\left(a\right)},\:-\sqrt[n]{f\left(a\right)}\\\\x=\sqrt[6]{6}\approx 1.35\\\\\:x=-\sqrt[6]{6}\approx -1.35](https://tex.z-dn.net/?f=%5Cmathrm%7BDivide%5C%3Aboth%5C%3Asides%5C%3Aby%5C%3A%7D5%5C%5C%5C%5C%5Cfrac%7B5x%5E6%7D%7B5%7D%3D%5Cfrac%7B30%7D%7B5%7D%5C%5C%5C%5C%5Cmathrm%7BSimplify%7D%5C%5C%5C%5Cx%5E6%3D6%5C%5C%5C%5C%5Cmathrm%7BFor%5C%3A%7Dx%5En%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%2C%5C%3An%5C%3Ais%5C%3Aeven%2C%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dx%3D%5Csqrt%5Bn%5D%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A-%5Csqrt%5Bn%5D%7Bf%5Cleft%28a%5Cright%29%7D%5C%5C%5C%5Cx%3D%5Csqrt%5B6%5D%7B6%7D%5Capprox%201.35%5C%5C%5C%5C%5C%3Ax%3D-%5Csqrt%5B6%5D%7B6%7D%5Capprox%20-1.35)
Answer:
$1,792
Step-by-step explanation:
3 1/2×36.40=116.48
116.48÷6.5%=1,792
$1,792
5280 feet in a mile
3.25 x 5280 = 17160 feet
Answer: hello your question is poorly written below is the complete question
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.
answer:
a ) R is equivalence
b) y = 2x + C
Step-by-step explanation:
<u>a) Prove that R is an equivalence relation </u>
Every line is seen to be parallel to itself ( i.e. reflexive ) also
L1 is parallel to L2 and L2 is as well parallel to L1 ( i.e. symmetric ) also
If we presume L1 is parallel to L2 and L2 is also parallel to L3 hence we can also conclude that L1 is parallel to L3 as well ( i.e. transitive )
with these conditions we can conclude that ; R is equivalence
<u>b) show the set of all lines related to y = 2x + 4 </u>
The set of all line that is related to y = 2x + 4
y = 2x + C
because parallel lines have the same slopes.