Answer:
P₂ = 2.88 atm
Explanation:
Given data:
Initial volume of gas = 1.8 L
Final volume = 750 mL
Initial pressure = 17.5 Psi
Final pressure = ?
Solution:
We will convert the units first:
Initial pressure = 17.5 /14.696 = 1.2 atm
Final volume = 750 mL ×1L/1000L = 0.75 L
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
1.2 atm × 1.8 L = P₂ ×0.75 L
P₂ = 2.16 atm. L/ 0.75 L
P₂ = 2.88 atm
MAl₂(SO₄)₃·xH₂O:
(mAl×2) + (mS×3) + (mO×12) + (mH₂O×x)
(27×2)+(32×3)+(16×12)+(x×18) = 342 + 18x [g]
mAl₂: 27×2 = 54 [g]
54g ---------- 13,63%
342+18x ---- 100%
0,1363(342+18x) = 54
46,6146 + 2,4534x = 54
2,4534x = 7,3854
x ≈ 3
>>> Al₂(SO₄)₃·3H₂O <<<<
:)
Answer:
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 25.0 L
V₂ = ?
P₁ = 2575 mm Hg
Also, P (atm) = P (mm Hg) / 760
P₁ = 2575 / 760 atm = 3.39 atm
P₂ = 1.35 atm
T₁ = 353 K
T₂ = 253 K
Using above equation as:
Solving for V₂ , we get:
<u>V₂ = 45.0 L</u>
45.0 L is the volume of gas will the balloon contain at 1.35 atm and 253 K.