Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A = ![\frac{mass of A}{molar mass of A}](https://tex.z-dn.net/?f=%5Cfrac%7Bmass%20of%20A%7D%7Bmolar%20mass%20of%20A%7D)
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then
x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D
A force of attraction that
holds atom together
When atoms react they form a
chemical bond which is defined as a force of attraction that holds atom
together. A force of attraction is defined as a kind of force that draws two or
more objects together regardless of distance. There are two major categories of
forces of attraction, one is intramolecular and intermolecular. Intramolecular forces
is the presence of forces in atoms internally. While intermolecular is the
force by which the force that is existent in two or more elements.
Answer:
C. 1 cubic foot of loose sand
Explanation:
For many objects having equal volume , surface area will be maximum
of the object which has spherical shape .
But when a sphere is broken into tiny small spheres , total surface area of all the small spheres will be more than surface area of big sphere .
Hence among the given option , surface area of loose sand will have greatest surface area . Loose sand is equivalent to small spheres .
There are two molecular orbitals in the CH2O or formaldehyde. These are designated by the two types of bonding involved. The first is the sigma bonding. It is the head-on overlap of electrons of the C and H atoms. The second molecular orbital is formed from the pi orbital bonding. This is a sideway overlap of electrons between C-O bonding.
<u>Answer:</u> The product side must be ![ZnCl_2+H_2](https://tex.z-dn.net/?f=ZnCl_2%2BH_2)
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive metal displaces a less reactive metal from its chemical reaction.
![AB+C\rightarrow CB+A](https://tex.z-dn.net/?f=AB%2BC%5Crightarrow%20CB%2BA)
Metal C is more reactive than metal A.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This also means that total number of individual atoms on reactant side must be equal to the total number of individual atoms on the product side.
When zinc metal reacts with hydrochloric acid, it leads to the production of zinc chloride and hydrogen gas. The chemical reaction follows:
![Zn+2HCl\rightarrow ZnCl_2+H_2](https://tex.z-dn.net/?f=Zn%2B2HCl%5Crightarrow%20ZnCl_2%2BH_2)
<u>On reactant side:</u>
Number of zinc atoms = 1
Number of hydrogen atoms = 2
Number of chlorine atoms = 2
<u>On product side:</u>
Number of zinc atoms = 1
Number of hydrogen atoms = 2
Number of chlorine atoms = 2
Hence, the product side must be ![ZnCl_2+H_2](https://tex.z-dn.net/?f=ZnCl_2%2BH_2)