Answer:
molality = 0.564 m
Explanation:
Molality = number of moles of solute / kg of solvent
1- getting moles of solute:
number of moles = mass / molar mass
we have:
mass = 373.5 g
molar mass = 331.2 g/mol
Therefore:
number of moles = 373.5 / 331.2 = 1.128 moles
2- getting kg of solvent:
mass in kg = mass in grams * 10⁻³
mass in kg = 2 * 10³ * 10⁻³
mass in kg = 2 kg
3- getting molality:
Molality = number of moles of solute / kg of solvent
Molality = 1.128 / 2
Molalty = 0.564 m
Hope this helps :)
Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
Atomic mass Ar => 39.948 a.m.u
39.948 g --------------- 6.02x10²³ atoms
?? g -------------------- 3.8x10²⁴ atoms
(3.8x10²⁴) x 39.948 / 6.02x10²³ => 250 g
hope this helps!
Answer:
Motile bacteria have flagella, while nonmotile bacteria do not.
Explanation: