Answer:
<em>The velocity after the collision is 2.82 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
It states the total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of two bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
Or, equivalently:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

There is an m1=3.91 kg car moving at v1=5.7 m/s that collides with an m2=4 kg cart that was at rest v2=0.
After the collision, both cars stick together. Let's compute the common speed after that:



The velocity after the collision is 2.82 m/s
<h3><u>Answer</u>;</h3>
≈ 5 Kgm²/sec
<h3><u>Explanation</u>;</h3>
Angular momentum is given by the formula
L = Iω, where I is the moment of inertia and ω is the angular speed.
I = mr², where m is the mass and r is the radius
= 0.65 × 0.7²
= 0.3185
Angular speed, ω = v/r
= (2 × 3.142 × r × 2.5) r
= 15.71
Therefore;
Angular momentum = Iω
= 0.3185 × 15.71
= 5.003635
<u>≈ 5 Kgm²/sec</u>
Due to the fact that no one can consume .04 of a tablet, we can round down this answer to 1. This means that Mr. Jones should take C- 1 tablet per day.
I hope I've helped! :)
The buoyant force or upward buoyancy force